Doubly special relativity as a road to quantum gravity

José Javier Relancio Martínez

Departamento de Matemáticas y Computación, Universidad de Burgos, España; Centro de Astropartículas y Física de Altas Energías (CAPA), Universidad de Zaragoza, España

José Javier Relancio Martínez Doubly special relativity as a road to quantum gravity

Geometry in momentum space

2 Kinematics in DSR

3 Geometry in momentum space

4 Deformed relativistic wave equations

6 Conclusions

 $\bullet\,$ Any answer has to include matter and also the space-time structure $\to\,$ Gravity

- $\bullet\,$ Any answer has to include matter and also the space-time structure $\to\,$ Gravity
- If fundamental constituents of matter exist, does the same happen for spacetime?

- Any answer has to include matter and also the space-time structure \rightarrow Gravity
- If fundamental constituents of matter exist, does the same happen for spacetime?
- Do space "atoms" exist?

 $\bullet\,$ One of the challenges for present physics is the unification of GR and QFT \to QGT

- $\bullet\,$ One of the challenges for present physics is the unification of GR and QFT \to QGT
- In QFT, one assumes a given spacetime and studies in detail the properties and motion of particles in it

- $\bullet\,$ One of the challenges for present physics is the unification of GR and QFT \to QGT
- In QFT, one assumes a given spacetime and studies in detail the properties and motion of particles in it
- In GR, one assumes that the properties of matter and radiation are given and describes in detail the resultant spacetime (curvature)

- $\bullet\,$ One of the challenges for present physics is the unification of GR and QFT \to QGT
- In QFT, one assumes a given spacetime and studies in detail the properties and motion of particles in it
- In GR, one assumes that the properties of matter and radiation are given and describes in detail the resultant spacetime (curvature)
- A QGT should be valid at any energy, but an interaction mediated by spin-2 particle (same equations of GR) is not renormalizable

• Study of the first moments of the universe

- Study of the first moments of the universe
- Black holes: information, singularity?

- Study of the first moments of the universe
- Black holes: information, singularity?
- Answers \rightarrow QGT

• Attempts of unification: string theory, loop quantum gravity, supergravity, causal set theory...

- Attempts of unification: string theory, loop quantum gravity, supergravity, causal set theory...
- In most of them a minimal length appears \implies Planck length (I_P) ?

- Attempts of unification: string theory, loop quantum gravity, supergravity, causal set theory...
- In most of them a minimal length appears \implies Planck length (I_P) ?
- This is closely related to an energy scale \implies Planck energy (Λ)??

- Attempts of unification: string theory, loop quantum gravity, supergravity, causal set theory...
- In most of them a minimal length appears \implies Planck length (I_P) ?
- This is closely related to an energy scale \implies Planck energy (Λ)??
- Problem: there are no experimental evidences of a fundamental QGT

 $\bullet~\mbox{Classical spacetime} \rightarrow ``quantum'' spacetime$

- $\bullet~\mbox{Classical spacetime} \rightarrow ``quantum'' spacetime$
- \bullet Symmetries? \to LI should be broken/deformed at Planckian scales

- $\bullet~\mbox{Classical spacetime} \rightarrow ``quantum'' spacetime$
- \bullet Symmetries? \to LI should be broken/deformed at Planckian scales
- New effects \rightarrow Micro black holes creation?

- Classical spacetime \rightarrow "quantum" spacetime
- \bullet Symmetries? \to LI should be broken/deformed at Planckian scales
- New effects \rightarrow Micro black holes creation?
- Spacetime can be regarded as a "foam"

Spacetime: the last frontier

José Javier Relancio Martínez

Doubly special relativity as a road to quantum gravity

• We can obtain I_P , t_P and M_P

$$l_P = \sqrt{rac{\hbar G}{c^3}} = 1.6 imes 10^{-35} \,\mathrm{m}$$

 $t_P = \sqrt{rac{\hbar G}{c^5}} = 5.4 imes 10^{-44} \,\mathrm{s}$
 $M_P = \sqrt{rac{\hbar c}{G}} = 2.2 imes 10^{-8} \,\mathrm{kg} = 1.2 imes 10^{19} \,\mathrm{GeV}/c^2$

• We can obtain I_P , t_P and M_P

$$l_P = \sqrt{rac{\hbar G}{c^3}} = 1,6 imes 10^{-35} \text{ m}$$

 $t_P = \sqrt{rac{\hbar G}{c^5}} = 5,4 imes 10^{-44} \text{ s}$
 $M_P = \sqrt{rac{\hbar c}{G}} = 2,2 imes 10^{-8} \text{ kg} = 1,2 imes 10^{19} \text{ GeV}/c^2$

• New approach \rightarrow low energy limit of a QGT that could have experimental observations!

• We can obtain I_P , t_P and M_P

$$l_P = \sqrt{rac{\hbar G}{c^3}} = 1,6 imes 10^{-35} \,\mathrm{m}$$

 $t_P = \sqrt{rac{\hbar G}{c^5}} = 5,4 imes 10^{-44} \,\mathrm{s}$
 $M_P = \sqrt{rac{\hbar c}{G}} = 2,2 imes 10^{-8} \,\mathrm{kg} = 1,2 imes 10^{19} \,\mathrm{GeV}/c^2$

- $\bullet~$ New approach $\rightarrow~$ low energy limit of a QGT that could have experimental observations!
- No quantum or gravitational effects but

$$M_P = \lim_{\hbar, G \to 0} \sqrt{\frac{\hbar c}{G}} \neq 0$$

• This possibility was first considered in 60's

- This possibility was first considered in 60's
- There is a loss of the relativity principle

- This possibility was first considered in 60's
- There is a loss of the relativity principle
- $\bullet\,$ There is a privileged observer $\to\,$ physical laws depending on the observer

- This possibility was first considered in 60's
- There is a loss of the relativity principle
- $\bullet\,$ There is a privileged observer $\to\,$ physical laws depending on the observer
- $\bullet\,$ Formulated in the quantum field theory framework $\rightarrow\,$ standard model extension (SME)

• There is a relativity principle

- There is a relativity principle
- Two invariants in every inertial frame: speed of light c and Planck length I_P

3 Geometry in momentum space

- 4 Deformed relativistic wave equations
- 6 Conclusions

Ingoing particles past ∞ Interaction \sim Outgoing particles future ∞

Ingoing particles past \bigotimes Interaction \Box Outgoing particles future \bigotimes

Ingoing and outgoing particles movement is described by the dispersion relation
Ingoing particles past \bigotimes Interaction \Box Outgoing particles future \bigotimes

- Ingoing and outgoing particles movement is described by the dispersion relation
- In the interaction, the conservation of total momentum holds

• Dispersion relation

$$C(k) = k_0^2 - \vec{k}^2 = m^2$$

• Dispersion relation

$$C(k) = k_0^2 - \vec{k}^2 = m^2$$

• Conservation law

Total momentum $= p_{\mu} + q_{\mu}$

• Lorentz transformations connect inertial observers, leading to a relativity principle.

- Lorentz transformations connect inertial observers, leading to a relativity principle.
- Simple example: decay of a particle $A(k) \rightarrow B(p) + C(q)$

- Lorentz transformations connect inertial observers, leading to a relativity principle.
- Simple example: decay of a particle $A(k) \rightarrow B(p) + C(q)$
- Onshell condition for different observers

$$C(k) = C(k') = m^2 \implies k_0^2 - \vec{k}^2 = k_0'^2 - \vec{k}'^2$$

- Lorentz transformations connect inertial observers, leading to a relativity principle.
- Simple example: decay of a particle $A(k) \rightarrow B(p) + C(q)$
- Onshell condition for different observers

$$C(k) = C(k') = m^2 \implies k_0^2 - \vec{k}^2 = k_0'^2 - \vec{k}'^2$$

• Conservation of momenta

$$k_{\mu} = p_{\mu} + q_{\mu}$$

- Lorentz transformations connect inertial observers, leading to a relativity principle.
- Simple example: decay of a particle $A(k) \rightarrow B(p) + C(q)$
- Onshell condition for different observers

$$C(k) = C(k') = m^2 \implies k_0^2 - \vec{k}^2 = k_0'^2 - \vec{k}'^2$$

Conservation of momenta

$$k_{\mu}~=~p_{\mu}+q_{\mu}$$

 If there is a relativity principle, a different observer would also see

$$k_\mu'~=~p_\mu'+q_\mu'$$

i.e., the conservation of momenta viewed from a different reference frame

José Javier Relancio Martínez

Doubly special relativity as a road to quantum gravity

• Dispersion relation

$$C(k) = k_0^2 - \vec{k}^2 + \frac{k_0^3}{\Lambda} + \dots = m^2$$

• Dispersion relation

$$C(k) = k_0^2 - \vec{k}^2 + \frac{k_0^3}{\Lambda} + \dots = m^2$$

Conservation law

Total momentum
$$\,=\, {m
ho}_{\mu} + {m q}_{\mu}$$

• There is a loss of the relativity principle.

- There is a loss of the relativity principle.
- Onshell condition for different observers

 $C(k) \neq C(k')$

- There is a loss of the relativity principle.
- Onshell condition for different observers

 $C(k) \neq C(k')$

• Therefore, there is a privileged reference frame (isotropic CMB radiation)

• Dispersion relation

$$C(k) = k_0^2 - \vec{k}^2 + \frac{k_0^3}{\Lambda} + \dots = m^2$$

• Dispersion relation

$$C(k) = k_0^2 - \vec{k}^2 + \frac{k_0^3}{\Lambda} + \dots = m^2$$

Conservation laws

Total momentum
$$= (p \oplus q)_{\mu} = p_{\mu} + q_{\mu} + rac{p_{\mu}q_0}{\Lambda} + ...$$

• Dispersion relation

$$C(k) = k_0^2 - \vec{k}^2 + \frac{k_0^3}{\Lambda} + \dots = m^2$$

Conservation laws

Total momentum
$$= (p \oplus q)_{\mu} = p_{\mu} + q_{\mu} + \frac{p_{\mu}q_0}{\Lambda} + ...$$

• Dispersion relation and conservation law compatible with relativity principle \rightarrow deformed Lorentz transformations

• Lorentz transformations connect inertial observers, leading to a relativity principle.

- Lorentz transformations connect inertial observers, leading to a relativity principle.
- Onshell condition for different observers

$$C(k) = C(k') = m^2$$

- Lorentz transformations connect inertial observers, leading to a relativity principle.
- Onshell condition for different observers

$$C(k) = C(k') = m^2$$

• Conservation of momenta

$$k_{\mu}\,=\,(p\oplus q)_{\mu}$$

- Lorentz transformations connect inertial observers, leading to a relativity principle.
- Onshell condition for different observers

$$C(k) = C(k') = m^2$$

Conservation of momenta

$$k_\mu\,=\,(p\oplus q)_\mu$$

• If there is a relativity principle, a different observer would also see

$$k_\mu^\prime\,=\,(p\oplus q)_\mu^\prime\,=\,(p^\prime\oplusar q)_\mu$$

i.e., the conservation of momenta viewed from a different reference frame

José Javier Relancio Martínez Doubly special relativity as a road to quantum gravity

• κ-Poincaré: very much studied model appearing in the context of Hopf algebras [Majid and Ruegg (1994)]

- κ-Poincaré: very much studied model appearing in the context of Hopf algebras [Majid and Ruegg (1994)]
- Particular example: symmetric basis [Lukierski et al. (1992)]

- κ-Poincaré: very much studied model appearing in the context of Hopf algebras [Majid and Ruegg (1994)]
- Particular example: symmetric basis [Lukierski et al. (1992)]
- Deformed dispersion relation

$$C_{\rm A}^{(S)}(p) \,=\, \left(2\Lambda\sinh\left(rac{p_0}{2\Lambda}
ight)
ight)^2 - ec{p}^2$$

- κ-Poincaré: very much studied model appearing in the context of Hopf algebras [Majid and Ruegg (1994)]
- Particular example: symmetric basis [Lukierski et al. (1992)]
- Deformed dispersion relation

$$C_{\mathsf{A}}^{(S)}(p) \,=\, \left(2\Lambda\sinh\left(rac{p_0}{2\Lambda}
ight)
ight)^2 - ec{p}^2$$

Deformed conservation law

$$(p \oplus q)_0 = p_0 + q_0, \qquad (p \oplus q)_i = p_i e^{q_0/2\Lambda} + q_i e^{-p_0/2\Lambda}$$

- κ-Poincaré: very much studied model appearing in the context of Hopf algebras [Majid and Ruegg (1994)]
- Particular example: symmetric basis [Lukierski et al. (1992)]
- Deformed dispersion relation

$$C_{\mathsf{A}}^{(S)}(p) \,=\, \left(2\Lambda\sinh\left(rac{p_0}{2\Lambda}
ight)
ight)^2 - ec{p}^2$$

Deformed conservation law

$$(p \oplus q)_0 = p_0 + q_0, \qquad (p \oplus q)_i = p_i e^{q_0/2\Lambda} + q_i e^{-p_0/2\Lambda}$$

Noncommutative spacetime

$$\left[\tilde{x}^{i}, \tilde{x}^{0}\right] = i \frac{\tilde{x}^{i}}{\Lambda}$$

• Model that cannot be obtained from Hopf algebras

- Model that cannot be obtained from Hopf algebras
- Particular example: Maggiore representation [Battisti and Meljanac (2010)]

- Model that cannot be obtained from Hopf algebras
- Particular example: Maggiore representation [Battisti and Meljanac (2010)]
- There is not a deformed dispersion relation,

$$C(p) = p_0^2 - \vec{p}^2$$

- Model that cannot be obtained from Hopf algebras
- Particular example: Maggiore representation [Battisti and Meljanac (2010)]
- There is not a deformed dispersion relation,

$$C(p) = p_0^2 - \vec{p}^2$$

but there is a deformed conservation law

$$(p\oplus q)^{
m Snyder}_{\mu} = \ p_{\mu}\left(\sqrt{1+rac{q^2}{\Lambda^2}}+rac{p_{\mu}\eta^{\mu
u}q_{
u}}{\Lambda^2\left(1+\sqrt{1+p^2/\Lambda^2}
ight)}
ight)+q_{\mu}$$

- Model that cannot be obtained from Hopf algebras
- Particular example: Maggiore representation [Battisti and Meljanac (2010)]
- There is not a deformed dispersion relation,

$$C(p) = p_0^2 - \vec{p}^2$$

but there is a deformed conservation law

$$(p\oplus q)^{
m Snyder}_{\mu} = \ p_{\mu}\left(\sqrt{1+rac{q^2}{\Lambda^2}}+rac{p_{\mu}\eta^{\mu
u}q_{
u}}{\Lambda^2\left(1+\sqrt{1+p^2/\Lambda^2}
ight)}
ight)+q_{\mu}$$

Noncommutative spacetime

$$[\tilde{x}^{\mu}, \tilde{x}^{\nu}] = i \frac{J^{\mu\nu}}{\Lambda^2}$$

• Planck energy $\rightarrow 10^{19} \text{ GeV}$

- Planck energy $\rightarrow 10^{19} \text{ GeV}$
- $\bullet~\mbox{Particle}$ accelerators \rightarrow 1.3 $\times~\mbox{10}^4~\mbox{GeV}$

- Planck energy $\rightarrow 10^{19} \text{ GeV}$
- \bullet Particle accelerators \rightarrow 1.3 \times 10^{4} GeV
- Cosmic rays $ightarrow 10^{11}~{
 m GeV}$

- Planck energy $ightarrow 10^{19}~{
 m GeV}$
- \bullet Particle accelerators \rightarrow 1.3 \times 10^{4} GeV
- Cosmic rays $ightarrow 10^{11}$ GeV
- Phenomenology? → Really precise experiments or amplifications at low energies

Properties	LIV	DSR
Relativity Principle	X	\checkmark
Threshold energy modification	1	X
Processes not allowed in SR	1	×
Time delay of massless particles	1	×

Theory	Threshold in SR	Correction term	Energy
LIV	$\frac{m^2}{E_{\mu}^2}$	$\frac{E_u}{\Lambda}$	$E_u^3 \sim \Lambda m^2$
DSR	$\frac{m^2}{E_{\mu}^2}$	$\frac{m^2}{E_{\mu}\Lambda}$	$E_u \sim \Lambda$
Properties	LIV	DSR	
----------------------------------	-----	--------------	
Relativity Principle	X	\checkmark	
Threshold energy modification	1	X	
Processes not allowed in SR	1	×	
Time delay of massless particles	1	×	

Properties	LIV	DSR
Relativity Principle	X	1
Threshold energy modification	1	×
Processes not allowed in SR	1	×
Time delay of massless particles	1	×

DSR only observable if $\Lambda \ll M_p!$

José Javier Relancio Martínez Doubly special relativity as a road to quantum gravity

2 Kinematics in DSR

3 Geometry in momentum space

4 Deformed relativistic wave equations

5 Conclusions

Introduction to curved geometries [Weinberg (1972)]

 $\bullet~\text{SR} \rightarrow \text{GR:}$ flat to curved spacetime

Introduction to curved geometries [Weinberg (1972)]

- $\bullet~\text{SR} \rightarrow \text{GR:}$ flat to curved spacetime
- Special transformations: isometries preserve distance

- \bullet SR \rightarrow GR: flat to curved spacetime
- Special transformations: isometries preserve distance
- For a n dimensional space, there can be at most n(n+1)/2 isometries

- $\bullet~\text{SR} \rightarrow \text{GR:}$ flat to curved spacetime
- Special transformations: isometries preserve distance
- For a n dimensional space, there can be at most n(n+1)/2 isometries
- Maximally symmetric spaces: Minkowski (flat), de Sitter (hyperboloid), anti de Sitter (sphere)

- $\bullet~\text{SR} \rightarrow \text{GR:}$ flat to curved spacetime
- Special transformations: isometries preserve distance
- For a n dimensional space, there can be at most n(n+1)/2 isometries
- Maximally symmetric spaces: Minkowski (flat), de Sitter (hyperboloid), anti de Sitter (sphere)
- In Minkowski spacetime, translations and Lorentz transformations are isometries

$$D(x_2, x_2 + x_1) = D(0, x_1)$$

$$D(0, x_1') = D(0, x_1)$$

• First proposed by Born to avoid ultraviolet divergences in QFT

- $\bullet\,$ First proposed by Born to avoid ultraviolet divergences in QFT
- Considered again in DSR framework

- First proposed by Born to avoid ultraviolet divergences in QFT
- Considered again in DSR framework
- $\bullet~\text{SR} \rightarrow \text{DSR:}$ flat to curved momentum space?

- First proposed by Born to avoid ultraviolet divergences in QFT
- Considered again in DSR framework
- $\bullet~\text{SR} \rightarrow \text{DSR}:$ flat to curved momentum space?
- $\bullet~{\rm Problem} \rightarrow$ not clear how to implement the relativity principle

• Dispersion relation \rightarrow Squared distance from the origin to k [Amelino-Camelia et al. (2011)]

- Dispersion relation \rightarrow Squared distance from the origin to k [Amelino-Camelia et al. (2011)]
- \bullet Translations, deformed "Lorentz" generators \rightarrow 10 isometries of the metric!

- Dispersion relation \rightarrow Squared distance from the origin to k [Amelino-Camelia et al. (2011)]
- \bullet Translations, deformed "Lorentz" generators \rightarrow 10 isometries of the metric!
- Only a maximally symmetric momentum space (MSS) satisfies this! → Minkowski, de Sitter or anti de Sitter

 $\bullet\,$ Flat Minkowski metric $\eta^{\,\mu\nu}$

- Flat Minkowski metric $\eta^{\,\mu\nu}$
- Dispersion relation \rightarrow Square of the distance from the origin to k

$$C(k) = k^2 = m^2$$

- Flat Minkowski metric $\eta^{\,\mu\nu}$
- Dispersion relation \rightarrow Square of the distance from the origin to k

$$C(k) = k^2 = m^2$$

 Conservation law → 4 isometries of the metric corresponding to translations in momentum space forming a subgroup

$$q_\mu^\prime\,=\,p_\mu+q_\mu$$

- Flat Minkowski metric $\eta^{\,\mu\nu}$
- Dispersion relation \rightarrow Square of the distance from the origin to k

$$C(k) = k^2 = m^2$$

 Conservation law → 4 isometries of the metric corresponding to translations in momentum space forming a subgroup

$$q_\mu^\prime \,=\, p_\mu + q_\mu$$

• Lorentz transformations \rightarrow 6 isometries of the metric forming a subgroup

• Start by a momentum metric

$$g_{00}(p) = 1, \quad g_{0i}(p) = g_{i0}(p) = rac{p_i}{2\Lambda}, \quad g_{ij}(p) = -\delta^i_j e^{-p_0/\Lambda} + rac{p_i p_j}{4\Lambda^2}$$

• Start by a momentum metric

$$g_{00}(p) = 1$$
, $g_{0i}(p) = g_{i0}(p) = \frac{p_i}{2\Lambda}$, $g_{ij}(p) = -\delta_j^i e^{-p_0/\Lambda} + \frac{p_i p_j}{4\Lambda^2}$

• Compute the Casimir using [Relancio and Liberati (2020)]

$$\mathcal{C}_{\mathsf{D}}(p) = f^{\mu}g_{\mu
u}(p)f^{
u}, \qquad f^{\mu}(p) := rac{1}{2}rac{\partial\mathcal{C}_{\mathsf{D}}(p)}{\partial p_{\mu}}$$

• Start by a momentum metric

$$g_{00}(p) = 1$$
, $g_{0i}(p) = g_{i0}(p) = \frac{p_i}{2\Lambda}$, $g_{ij}(p) = -\delta_j^i e^{-p_0/\Lambda} + \frac{p_i p_j}{4\Lambda^2}$

• Compute the Casimir using [Relancio and Liberati (2020)]

$$C_{\mathrm{D}}(p) = f^{\mu}g_{\mu
u}(p)f^{
u}, \qquad f^{\mu}(p) := rac{1}{2}rac{\partial C_{\mathrm{D}}(p)}{\partial p_{\mu}}$$

• Compute the composition law using

$$g_{\mu
u}\left(p\oplus q
ight) \,=\, rac{\partial\left(p\oplus q
ight) _{\mu}}{\partial q_{
ho}}g_{
ho\sigma}(q)rac{\partial\left(p\oplus q
ight) _{
u}}{\partial q_{\sigma}}$$

• Start by a momentum metric

$$g_{00}(p) = 1$$
, $g_{0i}(p) = g_{i0}(p) = \frac{p_i}{2\Lambda}$, $g_{ij}(p) = -\delta_j^i e^{-p_0/\Lambda} + \frac{p_i p_j}{4\Lambda^2}$

• Compute the Casimir using [Relancio and Liberati (2020)]

$$\mathcal{C}_{\mathsf{D}}(p) = f^{\mu}g_{\mu
u}(p)f^{
u}, \qquad f^{\mu}(p) := rac{1}{2}rac{\partial\mathcal{C}_{\mathsf{D}}(p)}{\partial p_{\mu}}$$

• Compute the composition law using

$$g_{\mu
u}\left(p\oplus q
ight) \,=\, rac{\partial\left(p\oplus q
ight) _{\mu}}{\partial q_{
ho}}g_{
ho\sigma}(q)rac{\partial\left(p\oplus q
ight) _{
u}}{\partial q_{\sigma}}$$

 Using this metric one obtains the same kinematics of κ-Poincaré in the symmetric basis!

José Javier Relancio Martínez Doubly special relativity as a road to quantum gravity

•
$$C_A \neq C_D$$
 but $C_D = h(C_A)$

- $C_A \neq C_D$ but $C_D = h(C_A)$
- Different kinematics can be obtained from the same metric:

- $C_A \neq C_D$ but $C_D = h(C_A)$
- Different kinematics can be obtained from the same metric: same dispersion relation but different composition laws

- $C_A \neq C_D$ but $C_D = h(C_A)$
- Different kinematics can be obtained from the same metric: same dispersion relation but different composition laws
- Particular example:

$$g_{\mu
u}({\it p})\,=\,\eta_{\mu
u}+{\it p}_{\mu}{\it p}_{
u}/\Lambda^2$$

- $C_A \neq C_D$ but $C_D = h(C_A)$
- Different kinematics can be obtained from the same metric: same dispersion relation but different composition laws
- Particular example:

$$g_{\mu\nu}(p) = \eta_{\mu\nu} + p_{\mu}p_{\nu}/\Lambda^2$$

• Snyder kinematics [Battisti and Meljanac (2010)]

$$(p\oplus q)^{
m Snyder}_{\mu} = \ p_{\mu}\left(\sqrt{1+rac{q^2}{\Lambda^2}}+rac{p_{\mu}\eta^{\mu
u}q_{
u}}{\Lambda^2\left(1+\sqrt{1+p^2/\Lambda^2}
ight)}
ight)+q_{\mu}$$

- $C_{A} \neq C_{D}$ but $C_{D} = h(C_{A})$
- Different kinematics can be obtained from the same metric: same dispersion relation but different composition laws
- Particular example:

$$g_{\mu\nu}(p) = \eta_{\mu\nu} + p_{\mu}p_{\nu}/\Lambda^2$$

• Snyder kinematics [Battisti and Meljanac (2010)]

$$(p\oplus q)^{
m Snyder}_{\mu} = \ p_{\mu}\left(\sqrt{1+rac{q^2}{\Lambda^2}}+rac{p_{\mu}\eta^{\mu
u}q_{
u}}{\Lambda^2\left(1+\sqrt{1+p^2/\Lambda^2}
ight)}
ight)+q_{\mu}$$

• κ-Poincaré in classical basis [Borowiec and Pachol (2010)]

$$(p \oplus q)_{\mu}^{\kappa-\mathsf{Poincaré}} = p_{\mu} \left(\sqrt{1 + \frac{q^2}{\Lambda^2}} + \frac{q_0}{\Lambda} \right) + q_{\mu} + n_{\mu} \left[\frac{\sqrt{1 + p^2/\Lambda^2} - p_0/\Lambda}{1 - \bar{p}^2/\Lambda^2} \left(q_0 + \frac{q_{\alpha} \eta^{\alpha\beta} p_{\beta}}{\Lambda} \right) - q_0 \right]$$
where $n_{\mu} := (1, 0, 0, 0).$

2 Kinematics in DSR

3 Geometry in momentum space

4 Deformed relativistic wave equations

• In quantum mechanics, particles are described by vectors in a Hilbert space.

- In quantum mechanics, particles are described by vectors in a Hilbert space.
- The time evolution of a quantum state is given by the Schrödinger equation:

$$i\frac{\partial}{\partial t}\psi(x,t) = H\psi(x,t) = \left[-\frac{\hbar^2}{2m}\frac{\partial^2}{\partial x^2} + V\right]\psi(x,t)$$

- In quantum mechanics, particles are described by vectors in a Hilbert space.
- The time evolution of a quantum state is given by the Schrödinger equation:

$$i\frac{\partial}{\partial t}\psi(x,t) = H\psi(x,t) = \left[-\frac{\hbar^2}{2m}\frac{\partial^2}{\partial x^2} + V\right]\psi(x,t)$$

This is the analogue version of Hamiltonian in classical mechanics

$$H = \frac{\vec{p}^2}{2m} + V$$

• The generalization to a relativistic setting is the Klein–Gordon equation

$$\left(\eta^{\mu
u}rac{\partial}{\partial x^{
u}}rac{\partial}{\partial x^{\mu}}+m^{2}
ight)\phi(x)\,=\,0$$

• The generalization to a relativistic setting is the Klein–Gordon equation

$$\left(\eta^{\mu\nu}\frac{\partial}{\partial x^{\nu}}\frac{\partial}{\partial x^{\mu}}+m^{2}
ight)\phi(x)\,=\,0$$

• A solution to this equation is a plane wave. Making a Fourier transformation

$$\phi(x) = \frac{\sqrt{2}}{(2\pi)^3} \int \mathrm{d}^4 p \, e^{\mathrm{i} x^\lambda p_\lambda} \tilde{\phi}(p)$$

we find

$$(p^2-m^2)\tilde{\phi}(p) = 0$$

• The generalization to a relativistic setting is the Klein–Gordon equation

$$\left(\eta^{\mu\nu}\frac{\partial}{\partial x^{\nu}}\frac{\partial}{\partial x^{\mu}}+m^{2}
ight)\phi(x)\,=\,0$$

• A solution to this equation is a plane wave. Making a Fourier transformation

$$\phi(x) = \frac{\sqrt{2}}{(2\pi)^3} \int \mathrm{d}^4 p \, e^{\mathrm{i} x^\lambda p_\lambda} \tilde{\phi}(p)$$

we find

$$(p^2-m^2)\tilde{\phi}(p) = 0$$

• This is the onshell condition, the relativistic Hamiltonian
• The Dirac equation describes a spin 1/2 particle

$$(i\gamma^\mu\partial_\mu - m\mathbb{1}_4)\,\psi(x)\,=\,0$$

where γ^{μ} are the Dirac matrices

$$\gamma^{0} = \begin{pmatrix} \mathbb{1}_{2} & 0\\ 0 & \mathbb{1}_{2} \end{pmatrix}, \qquad \gamma^{i} = \begin{pmatrix} 0 & \sigma^{i}\\ -\sigma^{i} & 0 \end{pmatrix}$$

satisfying

$$\{\gamma^{\mu},\gamma^{\nu}\} = 2\eta^{\mu\nu}\mathbb{1}_4$$

• The Dirac equation describes a spin 1/2 particle

$$(i\gamma^\mu\partial_\mu - m\mathbb{1}_4)\,\psi(x)\,=\,0$$

where γ^{μ} are the Dirac matrices

$$\gamma^{0} = \begin{pmatrix} \mathbb{1}_{2} & 0\\ 0 & \mathbb{1}_{2} \end{pmatrix}, \qquad \gamma^{i} = \begin{pmatrix} 0 & \sigma^{i}\\ -\sigma^{i} & 0 \end{pmatrix}$$

satisfying

$$\{\gamma^{\mu},\gamma^{\nu}\} = 2\eta^{\mu\nu}\mathbb{1}_4$$

 A solution to this equation is a plane wave. Making a Fourier transformation we find

$$(\gamma^{\mu}p_{\mu}-m\mathbb{1}_{4})\, ilde{\psi}(p)\,=\,0$$

• The Dirac equation describes a spin 1/2 particle

$$(i\gamma^\mu\partial_\mu - m\mathbb{1}_4)\,\psi(x)\,=\,0$$

where γ^{μ} are the Dirac matrices

$$\gamma^{0} = \begin{pmatrix} \mathbb{1}_{2} & 0\\ 0 & \mathbb{1}_{2} \end{pmatrix}, \qquad \gamma^{i} = \begin{pmatrix} 0 & \sigma^{i}\\ -\sigma^{i} & 0 \end{pmatrix}$$

satisfying

$$\{\gamma^{\mu},\gamma^{\nu}\} = 2\eta^{\mu\nu}\mathbb{1}_4$$

 A solution to this equation is a plane wave. Making a Fourier transformation we find

$$(\gamma^{\mu} p_{\mu} - m\mathbb{1}_4) \, \widetilde{\psi}(p) \, = \, 0$$

• By "squaring" this equation we find the Klein-Gordon equation

$$(\gamma^{\mu} p_{\mu} - m \mathbb{1}_4) (\gamma^{\mu} p_{\mu} + m \mathbb{1}_4) = (p^2 - m^2) \mathbb{1}_4$$

• In curved spacetimes, Klein-Gordon equation is

$$(C(x,p) - m^2) \phi(p) = (g^{\mu\nu}(x)p_{\mu}p_{\nu} - m^2) \phi(p) = 0$$

• In curved spacetimes, Klein-Gordon equation is

$$(C(x,p) - m^2) \phi(p) = (g^{\mu\nu}(x)p_{\mu}p_{\nu} - m^2) \phi(p) = 0$$

• In curved spacetimes, Dirac equation is

$$(i\gamma^a e^{\mu}{}_a(x)p_{\mu} - m\mathbb{1}_4)\psi(p) = 0$$

where $e^{\mu}{}_{a}(x)$ is the tetrad or vielbien satisfying

$$e^{\mu}{}_{a}(x)\eta^{ab}e^{\nu}{}_{b}(x) = g^{\mu\nu}(x)$$

• In curved spacetimes, Klein-Gordon equation is

$$(C(x,p) - m^2) \phi(p) = (g^{\mu\nu}(x)p_{\mu}p_{\nu} - m^2) \phi(p) = 0$$

• In curved spacetimes, Dirac equation is

$$(i\gamma^a e^{\mu}{}_a(x)p_{\mu} - m\mathbb{1}_4)\psi(p) = 0$$

where $e^{\mu}{}_{a}(x)$ is the tetrad or vielbien satisfying

$$e^{\mu}{}_{a}(x)\eta^{ab}e^{\nu}{}_{b}(x) = g^{\mu\nu}(x)$$

• Therefore, the anticommutator of

$$\gamma^{\mu} = \gamma^{a} e^{\mu}{}_{a}(x)$$

is

$$\{\underline{\gamma}^{\mu},\underline{\gamma}^{\nu}\} = 2g^{\mu\nu}(x)\mathbb{1}$$

• In curved spacetimes, Klein-Gordon equation is

$$(C(x,p) - m^2) \phi(p) = (g^{\mu\nu}(x)p_{\mu}p_{\nu} - m^2) \phi(p) = 0$$

• In curved spacetimes, Dirac equation is

$$(i\gamma^a e^{\mu}{}_a(x)p_{\mu} - m\mathbb{1}_4)\psi(p) = 0$$

where $e^{\mu}{}_{a}(x)$ is the tetrad or vielbien satisfying

$$e^{\mu}{}_{a}(x)\eta^{ab}e^{\nu}{}_{b}(x) = g^{\mu\nu}(x)$$

• Therefore, the anticommutator of

$$\gamma^{\mu} = \gamma^{a} e^{\mu}{}_{a}(x)$$

is

$$\{\underline{\gamma}^{\mu}, \underline{\gamma}^{\nu}\} = 2g^{\mu\nu}(x)\mathbb{1}$$

• By "squaring" the Dirac equation we find the Klein-Gordon one

• Klein–Gordon and Dirac equations already obtained in Hopf algebras [Lukierski et al. (1992); Nowicki et al. (1993)]

- Klein–Gordon and Dirac equations already obtained in Hopf algebras [Lukierski et al. (1992); Nowicki et al. (1993)]
- Our aim → geometrical derivation of these equations [Franchino-Viñas and Relancio (2022)]

- Klein–Gordon and Dirac equations already obtained in Hopf algebras [Lukierski et al. (1992); Nowicki et al. (1993)]
- Our aim → geometrical derivation of these equations [Franchino-Viñas and Relancio (2022)]
- We are able to reproduce them from a curved momentum space!

Deformed Klein–Gordon equation: construction

• Klein-Gordon equation derived from the Casimir (squared distance)

$$\left(\Lambda^2 \operatorname{arccosh}^2 \left(\cosh\left(rac{p_0}{\Lambda}
ight) - rac{ar{p}^2}{2\Lambda^2}
ight) - m^2
ight) \phi(p) \, = \, 0$$

Deformed Klein–Gordon equation: construction

• Klein-Gordon equation derived from the Casimir (squared distance)

$$\left(\Lambda^2 \operatorname{arccosh}^2\left(\cosh\left(\frac{p_0}{\Lambda}\right) - \frac{\bar{p}^2}{2\Lambda^2}\right) - m^2\right)\phi(p) = 0$$

• Klein-Gordon equation derived from the Casimir (Hopf algebra)

$$\left(\left(2\Lambda\sinh\left(rac{p_0}{2\Lambda}
ight)
ight)^2-ec{p}^2-m^2
ight)\phi(p)\,=\,0$$

Deformed Klein–Gordon equation: construction

• Klein-Gordon equation derived from the Casimir (squared distance)

$$\left(\Lambda^2 \operatorname{arccosh}^2\left(\cosh\left(\frac{p_0}{\Lambda}\right) - \frac{\bar{p}^2}{2\Lambda^2}\right) - m^2\right)\phi(p) = 0$$

• Klein-Gordon equation derived from the Casimir (Hopf algebra)

$$\left(\left(2\Lambda\sinh\left(rac{p_0}{2\Lambda}
ight)
ight)^2-ec{p}^2-m^2
ight)\phi(p)\,=\,0$$

• Different Casimirs: possible different behavior at ultraviolet regime.

Deformed Klein–Gordon equation: invariance

• Action in momentum space

$$S_{\mathrm{KG}} \, := \, \int \mathrm{d}^4 p \, \sqrt{-g} \, \phi^*(p) \left(C_{\mathrm{D}}(p) - m^2
ight) \phi(p)$$

Deformed Klein–Gordon equation: invariance

• Action in momentum space

$$S_{\mathrm{KG}} \, := \, \int \mathrm{d}^4 p \, \sqrt{-g} \, \phi^*(p) \left(C_{\mathrm{D}}(p) - m^2
ight) \phi(p)$$

• $\sqrt{-g}$ guarantees invariance under a change of momentum basis.

Deformed Klein–Gordon equation: invariance

• Action in momentum space

$$S_{\mathrm{KG}} \, := \, \int \mathrm{d}^4 p \, \sqrt{-g} \, \phi^*(p) \left(C_{\mathrm{D}}(p) - m^2
ight) \phi(p)$$

- $\sqrt{-g}$ guarantees invariance under a change of momentum basis.
- Invariance under deformed Lorentz transformations of the metric assuming the field transforms as a scalar

$$\phi'(p') = \phi(p)$$

since

$$C_{\rm D}(p) = C_{\rm D}(p')$$

• As for curved spacetimes, we use the momentum tetrad

$$\left(\underline{\gamma}^{\mu}f_{\mu}(\boldsymbol{p})-\boldsymbol{m}\right)\psi(\boldsymbol{p})\,=\,0$$

• As for curved spacetimes, we use the momentum tetrad

$$\left(\underline{\gamma}^{\mu}f_{\mu}(p)-m\right)\psi(p) = 0$$

with

$$f_{\mu}(p) := g_{\mu
u}(p)f^{
u}(p) = rac{1}{2}g_{\mu
u}(p)rac{\partial C_{\mathrm{D}}(p)}{\partial p_{
u}}$$

• As for curved spacetimes, we use the momentum tetrad

$$\left(\underline{\gamma}^{\mu}f_{\mu}(\boldsymbol{p})-\boldsymbol{m}\right)\psi(\boldsymbol{p})\,=\,0$$

with

$$f_{\mu}(p) := g_{\mu
u}(p)f^{
u}(p) = rac{1}{2}g_{\mu
u}(p)rac{\partial \mathcal{C}_{\mathrm{D}}(p)}{\partial p_{
u}}$$

and

$$\underline{\gamma}^{\mu} := \gamma^{a} e^{\mu}{}_{a}(p)$$

• As for curved spacetimes, we use the momentum tetrad

$$\left(\underline{\gamma}^{\mu}f_{\mu}(p)-m\right)\psi(p) = 0$$

with

$$f_{\mu}(p) := g_{\mu
u}(p)f^{
u}(p) = rac{1}{2}g_{\mu
u}(p)rac{\partial \mathcal{C}_{\mathrm{D}}(p)}{\partial p_{
u}}$$

and

$$\underline{\gamma}^{\mu} := \gamma^{a} e^{\mu}{}_{a}(p)$$

• The new gamma matrices satisfy

$$\{\underline{\gamma}^{\mu},\underline{\gamma}^{\nu}\} = 2g^{\mu\nu}(p)\mathbb{1}$$

• This equation can be obtained from the action

$$\mathcal{S}_{ ext{Dirac}} \, := \, \int \mathrm{d}^4 p \, \sqrt{-g} ar{\psi}(-p) \left(\underline{\gamma}^\mu f_\mu(p) - m
ight) \psi(p)$$

• This equation can be obtained from the action

$$\mathcal{S}_{ ext{Dirac}} \, := \, \int \mathrm{d}^4 p \, \sqrt{-g} ar{\psi}(-p) \left(\underline{\gamma}^\mu f_\mu(p) - m
ight) \psi(p)$$

• Klein-Gordon equation is obtained straightforwardly from

$$\left(\underline{\gamma}^{\nu}f_{\nu}(p)-m\right)\left(\underline{\gamma}^{\nu}f_{\nu}(p)+m\right) = C_{\mathrm{D}}(p)-m^{2}$$

• Invariant under deformed Lorentz transformations

- Invariant under deformed Lorentz transformations
- Invariant under change of momentum coordinates

- Invariant under deformed Lorentz transformations
- Invariant under change of momentum coordinates
- Discrete symmetries

$$\begin{split} \mathcal{P}_0 &:= \mathrm{i}\gamma^0\,, & \tilde{\psi}_{\mathcal{P}} &:= \mathrm{i}\gamma^0\tilde{\psi}(p_0,-\vec{p})\,, \\ \mathcal{T}_0 &:= \mathrm{i}\gamma^1\gamma^3\mathcal{K}\,, & \tilde{\psi}_{\mathcal{T}} &:= \mathrm{i}\gamma^1\gamma^3\tilde{\psi}^*(p_0,-\vec{p})\,, \\ \mathcal{C}_0 &:= \mathrm{i}\gamma^2\mathcal{K}\,, & \tilde{\psi}_{\mathcal{C}} &:= \mathrm{i}\gamma^2\tilde{\psi}^*(-p)\,. \end{split}$$

- Invariant under deformed Lorentz transformations
- Invariant under change of momentum coordinates
- Discrete symmetries

$$\begin{split} \mathcal{P}_0 &:= \mathrm{i}\gamma^0 \,, & \tilde{\psi}_{\mathcal{P}} &:= \mathrm{i}\gamma^0 \tilde{\psi}(p_0, -\vec{p}) \,, \\ \mathcal{T}_0 &:= \mathrm{i}\gamma^1 \gamma^3 \mathcal{K} \,, & \tilde{\psi}_{\mathcal{T}} &:= \mathrm{i}\gamma^1 \gamma^3 \tilde{\psi}^*(p_0, -\vec{p}) \,, \\ \mathcal{C}_0 &:= \mathrm{i}\gamma^2 \mathcal{K} \,, & \tilde{\psi}_{\mathcal{C}} &:= \mathrm{i}\gamma^2 \tilde{\psi}^*(-p) \,. \end{split}$$

 \bullet Invariant under ${\cal P}$ and ${\cal T}$

- Invariant under deformed Lorentz transformations
- Invariant under change of momentum coordinates
- Discrete symmetries

$$\begin{split} \mathcal{P}_0 &:= \mathrm{i}\gamma^0\,, & \tilde{\psi}_{\mathcal{P}} &:= \mathrm{i}\gamma^0\tilde{\psi}(p_0,-\vec{p})\,, \\ \mathcal{T}_0 &:= \mathrm{i}\gamma^1\gamma^3\mathcal{K}\,, & \tilde{\psi}_{\mathcal{T}} &:= \mathrm{i}\gamma^1\gamma^3\tilde{\psi}^*(p_0,-\vec{p})\,, \\ \mathcal{C}_0 &:= \mathrm{i}\gamma^2\mathcal{K}\,, & \tilde{\psi}_{\mathcal{C}} &:= \mathrm{i}\gamma^2\tilde{\psi}^*(-p)\,. \end{split}$$

- \bullet Invariant under ${\cal P}$ and ${\cal T}$
- \bullet Invariant under ${\cal C}$ when $\Lambda \to -\Lambda$

• Different tetrads lead to the same metric \rightarrow which one should we use?

- Different tetrads lead to the same metric \rightarrow which one should we use?
- The composition law identifies one and only one tetrad:

$$g_{\mu
u}\left(p\oplus q
ight) \,=\, rac{\partial\left(p\oplus q
ight) _{\mu}}{\partial q_{
ho}}g_{
ho\sigma}\left(q
ight) rac{\partial\left(p\oplus q
ight) _{
u}}{\partial q_{\sigma}}$$

- Different tetrads lead to the same metric \rightarrow which one should we use?
- The composition law identifies one and only one tetrad:

$$g_{\mu
u}\left(p\oplus q
ight) \,=\, rac{\partial\left(p\oplus q
ight) _{\mu}}{\partial q_{
ho}}g_{
ho\sigma}\left(q
ight) rac{\partial\left(p\oplus q
ight) _{
u}}{\partial q_{\sigma}}$$

so for $q \rightarrow 0$

$$g_{\mu
u}\left(p
ight) = \left.rac{\partial\left(p\oplus q
ight)_{\mu}}{\partial q_{
ho}}
ight|_{q
ightarrow 0} \eta_{
ho\sigma} \left.rac{\partial\left(p\oplus q
ight)_{
u}}{\partial q_{\sigma}}
ight|_{q
ightarrow 0}$$

- Different tetrads lead to the same metric \rightarrow which one should we use?
- The composition law identifies one and only one tetrad:

$$g_{\mu
u}\left(p\oplus q
ight) \,=\, rac{\partial\left(p\oplus q
ight) _{\mu}}{\partial q_{
ho}}g_{
ho\sigma}\left(q
ight) rac{\partial\left(p\oplus q
ight) _{
u}}{\partial q_{\sigma}}$$

so for q
ightarrow 0

$$g_{\mu
u}\left(p
ight) = \left.rac{\partial\left(p\oplus q
ight)_{\mu}}{\partial q_{
ho}}
ight|_{q
ightarrow 0} \eta_{
ho\sigma} \left.rac{\partial\left(p\oplus q
ight)_{
u}}{\partial q_{\sigma}}
ight|_{q
ightarrow 0}$$

• One finds the tetrad to be

$$e_{\mu}{}^{a}(p) := \left. \delta_{\nu}^{a} \left. rac{\partial \left(p \oplus q
ight)_{\mu}}{\partial q_{
u}} \right|_{q o 0}
ight.$$

- Different tetrads lead to the same metric \rightarrow which one should we use?
- The composition law identifies one and only one tetrad:

$$g_{\mu
u}\left(p\oplus q
ight) \,=\, rac{\partial\left(p\oplus q
ight) _{\mu}}{\partial q_{
ho}}g_{
ho\sigma}\left(q
ight) rac{\partial\left(p\oplus q
ight) _{
u}}{\partial q_{\sigma}}$$

so for q
ightarrow 0

$$g_{\mu
u}\left(p
ight) = \left.rac{\partial\left(p\oplus q
ight)_{\mu}}{\partial q_{
ho}}
ight|_{q
ightarrow 0} \eta_{
ho\sigma} \left.rac{\partial\left(p\oplus q
ight)_{
u}}{\partial q_{\sigma}}
ight|_{q
ightarrow 0}$$

One finds the tetrad to be

$$e_{\mu}{}^{a}(p) := \left. \delta_{\nu}^{a} \left. rac{\partial \left(p \oplus q
ight)_{\mu}}{\partial q_{
u}} \right|_{q o 0}
ight.$$

• We can construct the Dirac equation for different relativistic kinematics!

José Javier Relancio Martínez Doubly special relativity as a road to quantum gravity

• For the symmetric basis we find

$$\mathcal{D}_{\mathrm{D}}^{(5)} := \frac{\sqrt{\frac{C_{\mathbf{D}}^{(5)}(p)}{\Lambda^{2}}}}{2\Lambda \sinh\left(\sqrt{\frac{C_{\mathbf{D}}^{(5)}(p)}{\Lambda^{2}}}\right)} \left[2\Lambda e^{-\frac{p_{\mathbf{0}}}{2\Lambda}} \gamma^{i} p_{i} + \gamma^{\mathbf{0}} \left(2\Lambda^{\mathbf{2}} \sinh\left(\frac{p_{\mathbf{0}}}{\Lambda}\right) - \vec{p}^{\mathbf{2}}\right)\right]$$

• For the symmetric basis we find

$$\mathcal{D}_{\mathrm{D}}^{(S)} := \frac{\sqrt{\frac{C_{\mathbf{D}}^{(S)}(p)}{\Lambda^{2}}}}{2\Lambda \sinh\left(\sqrt{\frac{C_{\mathbf{D}}^{(S)}(p)}{\Lambda^{2}}}\right)} \left[2\Lambda e^{-\frac{p_{0}}{2\Lambda}} \gamma^{i} p_{i} + \gamma^{0} \left(2\Lambda^{2} \sinh\left(\frac{p_{0}}{\Lambda}\right) - \vec{p}^{2}\right)\right]$$

• If we use instead $C_A^{(S)}(p)$

$$\mathcal{D}_{A}^{(S)} := \gamma^{0} \left(\Lambda \sinh \left(\frac{p_{0}}{\Lambda} \right) - \frac{\vec{p}^{2}}{2\Lambda} \right) + e^{-p_{0}/2\Lambda} p_{i} \gamma^{i}$$

• For the symmetric basis we find

$$\mathcal{D}_{\mathrm{D}}^{(S)} := \frac{\sqrt{\frac{\zeta_{\mathbf{D}}^{(S)}(p)}{\Lambda^{2}}}}{2\Lambda \sinh\left(\sqrt{\frac{\zeta_{\mathbf{D}}^{(S)}(p)}{\Lambda^{2}}}\right)} \left[2\Lambda e^{-\frac{p_{\mathbf{0}}}{2\Lambda}} \gamma^{i} p_{i} + \gamma^{\mathbf{0}} \left(2\Lambda^{2} \sinh\left(\frac{p_{\mathbf{0}}}{\Lambda}\right) - \bar{p}^{2}\right)\right]$$

• If we use instead $C_A^{(S)}(p)$

$$\mathcal{D}_{\mathsf{A}}^{(S)} := \gamma^0 \left(\Lambda \sinh\left(\frac{p_0}{\Lambda}\right) - \frac{\vec{p}^2}{2\Lambda} \right) + e^{-p_0/2\Lambda} p_i \gamma^i$$

which is the same result obtained in Hopf algebras! [Nowicki et al. (1993)]

• For the symmetric basis we find

$$\mathcal{D}_{\mathrm{D}}^{(S)} := \frac{\sqrt{\frac{\zeta_{\mathbf{D}}^{(S)}(p)}{\Lambda^{2}}}}{2\Lambda \sinh\left(\sqrt{\frac{\zeta_{\mathbf{D}}^{(S)}(p)}{\Lambda^{2}}}\right)} \left[2\Lambda e^{-\frac{p_{\mathbf{0}}}{2\Lambda}} \gamma^{i} p_{i} + \gamma^{\mathbf{0}} \left(2\Lambda^{2} \sinh\left(\frac{p_{\mathbf{0}}}{\Lambda}\right) - \bar{p}^{2}\right)\right]$$

• If we use instead $C_A^{(S)}(p)$

$$\mathcal{D}_{A}^{(S)} := \gamma^{0} \left(\Lambda \sinh \left(\frac{p_{0}}{\Lambda} \right) - \frac{\bar{p}^{2}}{2\Lambda} \right) + e^{-p_{0}/2\Lambda} p_{i} \gamma^{i}$$

which is the same result obtained in Hopf algebras! [Nowicki et al. (1993)]

• Our construction leads to

$$\left(\mathcal{D}_{\mathrm{D}}^{(S)}\right)^2 = C_{\mathrm{D}}^{(S)}$$

2 Kinematics in DSR

3 Geometry in momentum space

4 Deformed relativistic wave equations

• We have developed a geometrical interpretation of a relativistic deformed kinematics

- We have developed a geometrical interpretation of a relativistic deformed kinematics
- We obtain the κ-Poincaré kinematics from a de Sitter momentum space

- We have developed a geometrical interpretation of a relativistic deformed kinematics
- We obtain the κ-Poincaré kinematics from a de Sitter momentum space
- Other possible kinematics can be obtained though this framework and also for anti de Sitter

• We have developed a geometrical interpretation of relativistic wave equations

- We have developed a geometrical interpretation of relativistic wave equations
- We obtain the Klein–Gordon and Dirac equations in κ-Poincaré from a de Sitter momentum space, which are the same results obtained in the Hopf algebra scheme

- We have developed a geometrical interpretation of relativistic wave equations
- We obtain the Klein–Gordon and Dirac equations in κ-Poincaré from a de Sitter momentum space, which are the same results obtained in the Hopf algebra scheme
- Analogous equations can be obtained for other kinematics, such as Snyder model

- We have developed a geometrical interpretation of relativistic wave equations
- We obtain the Klein–Gordon and Dirac equations in κ-Poincaré from a de Sitter momentum space, which are the same results obtained in the Hopf algebra scheme
- Analogous equations can be obtained for other kinematics, such as Snyder model
- We have made a first attempt into the identification of the relevant Hilbert space in a quantization process

- We have developed a geometrical interpretation of relativistic wave equations
- We obtain the Klein–Gordon and Dirac equations in κ-Poincaré from a de Sitter momentum space, which are the same results obtained in the Hopf algebra scheme
- Analogous equations can be obtained for other kinematics, such as Snyder model
- We have made a first attempt into the identification of the relevant Hilbert space in a quantization process
- Future work: include interactions

Thanks for your attention!!!

- Amelino-Camelia, G., Freidel, L., Kowalski-Glikman, J., and Smolin, L. (2011). The principle of relative locality. <u>Phys. Rev.</u>, D84:084010.
- Battisti, M. V. and Meljanac, S. (2010). Scalar Field Theory on Non-commutative Snyder Space-Time. Phys. Rev., D82:024028.
- Borowiec, A. and Pachol, A. (2010). Classical basis for kappa-Poincare algebra and doubly special relativity theories. <u>J.</u> Phys., A43:045203.
- Carmona, J. M., Cortés, J. L., and Relancio, J. J. (2019). Relativistic deformed kinematics from momentum space geometry. <u>Phys. Rev.</u>, D100(10):104031.
- Franchino-Viñas, S. A. and Relancio, J. J. (2022). Geometrize and conquer: the Klein-Gordon and Dirac equations in Doubly Special Relativity.
- Lukierski, J., Nowicki, A., and Ruegg, H. (1992). New quantum Poincare algebra and k deformed field theory. <u>Phys. Lett.</u>, B293:344–352.

- Majid, S. and Ruegg, H. (1994). Bicrossproduct structure of kappa Poincare group and noncommutative geometry. <u>Phys. Lett.</u>, B334:348–354.
- Nowicki, A., Sorace, E., and Tarlini, M. (1993). The Quantum deformed Dirac equation from the kappa Poincare algebra. <u>Phys.</u> Lett. B, 302:419–422.
- Relancio, J. J. and Liberati, S. (2020). Phenomenological consequences of a geometry in the cotangent bundle. <u>Phys. Rev.</u>, D101:064062.
- Weinberg, S. (1972). <u>Gravitation and Cosmology</u>. John Wiley and Sons, New York.