Cosmology from SKA Observatory pathfinders

Jacobo Asorey Universidad Complutense de Madrid

In collaboration with:

Benedict Bahr-Kalus (KASI), Stefano Camera (UoT), Catherine Hale (ROE), David Parkinson (KASI), Ignacio Sevilla-Noarbe (Ciemat), Fei Qin (KASI) and members of the EMU and RACS collaborations

B. Bahr-Kalus, D. Parkinson D., JA, S. Camera, C. Hale, F. Qin, 2022, MNRAS

GOBIERNO MINISTERIO DE ESPAÑA DE UNIVERSIDADES

Transformación y Resiliencia

* * * * * * *

Financiado por la Unión Europea NextGenerationEU

Saturnalia 2022, Universidad de Zaragoza, 20/11/2022

Cosmological Standard Model

- Isotropic and homogeneous Universe at large scales described by GR and a cosmological constant. 2

Cosmological Standard Model

Isotropic and homogeneous Universe at large scales described by GR and a cosmological constant. 2

Cosmological Standard Model

Isotropic and homogeneous Universe at large scales described by GR and _ a cosmological constant.

Isotropic and homogeneous Universe at large scales described by GR and _ a cosmological constant.

Isotropic and homogeneous Universe at large scales described by GR and _ a cosmological constant.

Timeline

D. Baumann, 2009, arXiv:0907.5424

Cosmological archeology

- 100 years of cosmological observations have lead us to establish the standard Λ CDM model, based on 6 parameters (Ω_b , Ω_m , n_s , A_s , τ , H_0).

V. Rubin et al. 1978

Cosmological archeology

- 100 years of cosmological observations have lead us to establish the standard Λ CDM model, based on 6 parameters (Ω_b , Ω_m , n_s , A_s , τ , H_0).

V. Rubin et al. 1978

Bullet Cluster

Large-scale structure

- Universe filled with density fluctuations
- Structure only only visible through galaxies (distribution) and photons (weak lensing)
- Galaxies and photons here are functioning as test particles tracing out the gravitational field
- Most low-redshift surveys have measured the transfer function.
- Need very large volumes to measure primordial power spectrum and determine initial conditions (independently from CMB)

Large-scale structure

- Universe filled with density fluctuations
- Structure only only visible through galaxies (distribution) and photons (weak lensing)
- Galaxies and photons here are functioning as test particles tracing out the gravitational field
- Most low-redshift surveys have measured the transfer function.
- Need very large volumes to measure primordial power spectrum and determine initial conditions (independently from CMB)

Large-scale structure

- Universe filled with density fluctuations
- Structure only only visible through galaxies (distribution) and photons (weak lensing)
- Galaxies and photons here are functioning as test particles tracing out the gravitational field
- Most low-redshift surveys have measured the transfer function.
- Need very large volumes to measure primordial power spectrum and determine initial conditions (independently from CMB)

Λ CDM confirmation (Standard rulers and candles)

- Supernovae and Baryonic Acoustic Oscillations results are consistent with the Λ CDM.

3x2pt Weak Lensing

- Combined correlations of galaxy clustering and shear distortion caused by weak gravitational lensing

Effect exagerated by x20

Image also contains noise

Atmosphere and telescope

Image also

Galaxy clustering

Galaxy-galaxy lensing

Cosmic shear

Λ CDM confirmation (3x2pt Weak Lensing)

- Weak lensing surveys are also supporting Λ CDM (3x2pt analysis)

Joint constraints

Combining all these data sets we find: $S_8 = 0.812^{+0.008}_{-0.008} (0.815)$ In Λ CDM: $\Omega_m = 0.306^{+0.004}_{-0.005} (0.306)$ $\sigma_8 = 0.804^{+0.008}_{-0.008} (0.807)$ $h = 0.680^{+0.004}_{-0.003} (0.681)$ $\sum m_{\nu} < 0.13 \text{ eV} (95\% \text{ CL})$ In wCDM: $\Omega_m = 0.302^{+0.006}_{-0.006} (0.298)$;

DES Collaboration (2021)

Modelling DE

- Evolution of the equation of state of DE and deviations of GR are not favoured by the data.

Tensions: New Physics or systematics?

Tensions: New Physics or systematics?

Riess et al. (2016)

Asgari et al. (2020)

- Simple model extensions or current checks on systematics are alleviating the tension.

Dark Energy Spectroscopic Instrument (DESI)

DESI predictions

3.0

3.5

2.5

2.0

1.5

z

DESI survey (@ 4m Mayall):

- 5000 fibre multi-object
- Footprint of 14000 sq. degs:
 - 35 million ELGs
 - 4 million LRGs
 - 2.4 million QSOs
- DESI will measure the BAO with 0.3%
- Growth factor: 1% precision.

85

85

80

75

70

65

60

55

0.0

0.5

1.0

H(z)/(1+z) (km/s/Mpc)

Wpc 90

j 80

(z+1)/(z)H

- Perfect for LCDM discrimination

Current Data

Redshift z

Future of optical surveys

FoM ~ 1500, -4000 (all) Main probes: WL & Galaxie clustering (BAO,RSD) (spectro)) European lead project / ESA Participation of NASA ~ 1000 members Space telescope / 1.2 m mirror Launch : Q4 2023 Mission length : 6 years 1 exposure depth : 24 mag Survey Area : 15 000 sq deg (.36 sky) Filters : 1 Visible(550-900nm)+ 3 IR (920-2000 nm) + NIR spectroscopy (1100 – 2000 nm)

FoM > 800 Main probes : WL, CL, SN, BAO (photo)... US lead project / NSF-DOE Participation of France/In2P3 ~ 450 Core members + 450 to come Ground Telescope / 6.5 m effective mirror 1st light : 2023 Observation length : 10 years 1 exposure depth : 24 mag (i) Survey Area : 20 000 sq dg (.48 sky) Filters : 6 filters (320-1070 nm)

"The redshift desert"

Redshift desert

- We need to access higher redshifts in order to complete the picture.

Beyond optical ...

Sampling the redshift desert

- In the near future, we will sample the "redshift desert" with different missions and surveys.

SKA1-LOW Rebase	Optical
HETDEX	Radio
SKA1-LOW Alt.	Optical
WFIRST (Nancy Grace Roman Space Telescope)	Radio
SKA1-MID B1 Alt.	IR Badio
Euclid	
DESI	IN
SKA1-MID B1 Rebase.	Optica
LSST (Vera C. Rubin Obs.)	Radio
SKA2	Oplica
SPHEREX	
BOSS	
SKA1-MID B2 Alt.	Optica
SKA1-MID B2 Rebase. EMU	Radio
	Radio
0 1 2 3 4 5 6	Radio

 \boldsymbol{z}

Bull (2016)

HI galaxy (like spectroscopic surveys) [e.g., HIPASS, ALFALFA]

Continuum galaxy (like photometric) surveys) [e.g., EMU]

HI galaxy (like spectroscopic surveys) [e.g., HIPASS, ALFALFA]

Continuum galaxy (like photometric) surveys) [e.g., EMU]

HI galaxy (like spectroscopic surveys) [e.g., HIPASS, ALFALFA]

Continuum galaxy (like photometric) surveys) [e.g., EMU]

HI galaxy (like spectroscopic surveys) [e.g., HIPASS, ALFALFA]

Continuum galaxy (like photometric) surveys) [e.g., EMU]

SKA Observatory (SKAO)

SKA Partners – includes Members of the SKA Organisation – precursor to the SKAO –, current SKAO Member States*, and SKAO Observers (as of June 2021)

SKA precursors

SKA-low built in Australia (MWA site) 100 stations, each containing 90 arrays of dipole antenna. Freq: 50-350 MHz SKA-mid built in South Africa (Karoo site)

MeerKAT: Single dish 0.58-1.65 GHz FoV: 1 sq. deg

MWA Dipole antenna 0.15 GHz FoV: 30 sq. deg

ASKAP 0.7-1.8 GHz FoV: 30 sq. deg

Radio Continuum Surveys

- Continuum surveys measure intensity of total radio emission, across waveband
- Emission dominated by synchrotron, so spectrum (almost) featureless
- Measure **RA** and **Dec** of sources, but need other information for redshift

NVSS Healpix map

Chen & Schwartz (2016)

Australian Square Kilometre Array Pathfinder (ASKAP)

- 36 12-metre antennas spread over a region 6 km in diameter
- frequency band of 700–1800 MHz, with an instantaneous bandwidth of 300 MHz
- FoV ~ 30deg², pointing accuracy > 30 arcsec
- Angular resolution ~ 10 arcsec
- 75% of the time: Survey projects

DINGO: HI evolution

POSSUM: MW magnetic fields

FLASH: HI absortion

EMU: Continuum

RACS: Continuum

WALLABY:

Spectroscopy 21cm

CRAFT: Fast transients

COAST: PTA

VAST: Slow transients

VLBI: long baseline

Evolutionary Map of the Universe (EMU)

- Main continuum survey with ASKAP
- Covering up to declination +30 degrees (30000 sq. deg)
- Expected noise of 15 µJy.
- Resolution of ~12" to 15" FWHM
- Expected 70 million sources

Long tail distributions

- Large-area and deep surveys give access to largest scales (modes larger than k_{eq}), both in radial and tangential directions
 - Early universe (non-Gaussianity)
 - Dark energy/modified gravity
 - large-scale features (dipole/anisotropy)

Cosmological observables

- Angular correlation function of radio galaxies
- Cosmic Magnification of high-z radio galaxies by low-z optical foreground galaxies
- Cosmic Magnification of CMB by radio galaxies
 - Cross-correlation between radio density and CMB on small scales
- 4. Integrated Sachs-Wolfe effect
 - Cross-correlation between radio density and CMB on large scales

Image credit: Tamara Davis

The Integrated Sachs Wolfe Effect

Credit: CAASTRO

The Integrated Sachs Wolfe Effect

Credit: CAASTRO

Statistics and correlations

- An individual galaxy is not enough, need a measure of the *distribution* of galaxies
- For radio continuum, don't have accurate redshift information
 - Everything in 2D (angular)
- We describe distribution of galaxies through $\sigma(\theta)$ displacement field
 - Here θ is a particular direction
- $\sigma(\theta)$ decomposed into its multiple moment using spherical harmonics
- Compute either *angular power* spectrum (same as the CMB) or angular correlation function

 $\begin{aligned} & \overbrace{i}^{i} & \overbrace{i} & \overbrace{i}^{i} & \overbrace{i}^{i} & \overbrace{i}^{i} & \overbrace{i}^{i} & \overbrace{i}^{i}$

Power spectrum: assume isotropy and average

$$\langle a_{\ell m}^* a_{\ell' m'} \rangle = \delta_{\ell \ell'} \delta_{m m'} C_{\ell}$$

Connection to theory

- How can we connect measured correlations to cosmological parameters (e.g. density of matter, Hubble parameter today)?
- We infer the underlying matter power spectra P(k)

$$C_{\ell}^{ij} = \frac{2}{\pi} \int W_{\ell}^{i}(K) W_{\ell}^{j}(k) P(k) k^{2} dk$$

- But need to understand the window function $W_{\ell}(k)$ of underlying populations

$$W_{\ell}(k) = \int j_{\ell}(kr)b(z)\frac{dN(z)}{dz}dr$$

- CMB Window function easy localised at z_{rec}.
- Galaxy window function more difficult
 signal can be confused with number or bias evolution

- Shopping list for cosmology:
- (Observations)
 - a large sample (N) of galaxies
 - over a large area (A),
 - with few holes/gaps
 - that can be sub-divided by redshift into bins
- (Theory understanding)
 - with known population number evolution n(z)
 - and known bias b(z)
 - and a known luminosity distribution L(z)
 - and a known evolutionary rate
- Of course, we may need to estimate the theoretic quantities ourselves at the same time as we do cosmology

Clustering statistics

- The error depends on the sample variance and on the shot noise.
- Angular clustering depends on the redshift distribution N(z) and the galaxy bias.
- N(z) from T-RECS simulation (Bonaldi et al., 2016) and theoretical prescription for the bias.

Angular power spectrum:

$$C_{\ell} = 4\pi \int \frac{dk}{k} \Delta^2(k) \left[W_{\ell}^g(k) \right]^2, \qquad \qquad W_{\ell}(k) = \int \frac{dN(\chi)}{d\chi} b(z) D(z) j_{\ell}[k\chi] d\chi.$$

Asorey & Parkinson 2021, MNRAS

Rapid ASKAP Continuum Survey (RACS)

- Rapid ASKAP Continuum Survey (RACS, fast)
 - Technology demonstration, no major science goals
- We acknowledge the Wajarri Yamatji people as the traditional owners of the Observatory site.

Baselines	22m - 6400m	All 36 antennas
Resolution	15 arcsec	
Frequencies	700-1800 MHz	288 MHz bandwidth
Integration	15 minutes	
Polarization	I, Q, U, V	
Image noise	~250 µJy	
Sky coverage	-90° < δ < +40°	903 tiles

RACS coverage : 2019-04-21 04:07:50.569

RACS coverage : 2019-04-21 04:07:50.569

RACS Source density

1.26 Million galaxies (EMU will have 40 Million).

32

RACS x Planck SMICA R3

- Removed Galactic plane ($|b| < 5^\circ$)
- Flux cut of 4 mJy
- Construct weight map w using SKADS simulations
- Apply Planck mask
- Cut regions with w < 0.5
- Apply weights to number count and obtain over-density field

Covariance matrices

- We use 4 different methods to obtain the gg covariance matrix: analytic, graphical lasso, sample covariance from 3000 Flask simulations and jackknife resampling from the data.

- Same for **gT** spectrum
- $gg \times gT$ from mocks only
- Use of sample cov for the main results
- $gg \times gT$ cov does not contribute to χ^2

RACS measurements

gg

g

Good agreement at small scales, Large scale power offset (Galaxy power spectra information at ℓ > 40 not included in analysis)

RACS measurements

gg

g

Good agreement at small scales, Large scale power offset (Galaxy power spectra information at ℓ > 40 not included in analysis)

Some systematics

- Large scale power excess seems to be correlated with declination
 - Close to south pole errors smaller, and mean close to predicted value
 - Close to equator number of counts smaller and sky noise large, power is higher than expected
- Hypothesis is that power excess is **not** non-Gaussianity causing scale-dependent bias, but a systematic caused by data reduction procedure

Cosmological constraints

- We vary b(z) and define A_{ISW} such that $C_{\ell,\text{measured}}^{gT} = A_{\text{ISW}} C_{\ell,\text{model}}^{gT}$
- more Bayesian approach to quantify significance of ISW detection
- A_{ISW} and b(z) degenerate in C_{ℓ}^{gT} , broken in combined C_{ℓ}^{gg} and C_{ℓ}^{gT} analysis
- b(z) also degenerate with $\frac{dN(z)}{dz}$
- analysis with N(z) inferred from **SKADS**, as well as from **T-RECS**

$$C_{\ell}^{ij} = \frac{2}{\pi} \int W_{\ell}^{i}(K) W_{\ell}^{j}(k) P(k) k^{2} dk$$
$$W_{\ell}(k) = \int j_{\ell}(kr) b(z) \frac{dN(z)}{dz} dr$$

Cosmological constraints

- Consider three bias parameterisations:
 - b(z) constant
 - $b(z) = b_0 + b_1 z$
 - $b(z) = b_0 \exp(\beta z)$
- Always take full ℓ -range into account for C_ℓ^{gT}
- Repeat C_ℓ^{gg} analysis with and without $\ell' < 40$
- Use scatter to estimate systematic uncertainty

 2.3σ detection of ISW effect with more conservative Bayesian analysis Probability of $A_{\rm ISW} > 0$ is 98.9%

Summary

- Measurements of the clustering of radio galaxies can be used to determine the bias of radio populations and the cosmological parameters
- The effect of anisotropic noise (location-dependent completeness) can be modelled when generating randoms, to remove any potential bias
- We used FLASK to generate mock catalogues with the same clustering power spectrum as our fiducial cosmology, to test our pipeline and estimate covariance matrix
- We measured angular power spectrum of radio continuum sources detected by RACS at 888 MHz, in auto-and cross-correlation with Planck CMB maps
- Angular power spectra of RACS galaxies consistent with prediction from ACDM, except on large scales where we detect an excess.
- Detect cross-correlation between galaxy distribution and CMB temperature distributions. Significant at 2.8σ relative to null hypothesis.
- Parameterise ISW amplitude as $A_{\rm ISW}$. Combining the angular auto- and cross-power spectra, and combining measurements obtained under different assumptions in conservative Bayesian way, we get $A_{\rm ISW} = 0.94^{+0.42}_{-0.41}$ (2.3 σ /98.9%)

Thank you!