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Event Horizon lelescope

The observations of the Event Horizon Telescope [1] in 2019 have ignited the beginning of a new era for testing the spacetime
structure and GR 1itself via the illumination of (ultra)-compact objects with electromagnetic radiation from accretion disks.
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FIgure: The observed EHT image (left) and the GRMHD simulated one (right). Credit from Ref.2
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Null geodesics and light deflection

Given a spacetime described by the metric:
ds* = gudatdx”

Null geodesics are:

d?z*(N) | L dxt(X) dz¥ (N)

| =0, Geodesics equation.
d\? A7 d dA

guwktk? =0 ——> gap dx:)f)‘) de)EA) =0, Constraint equation.

For our purposes, we simplify the calculations by considering a spherically symmetric spacetime:

ds® = —A(r)dt* + B(r)dr® + C(r)(d0” + sin” 6d¢”),

And assume that 1s asymptotically flat: |
lim A(r) =1,

T—00

lim B(r) =1,

r—00

lim C(r) = r.
r—00



Null geodesics and light deflection

Symmetries: Killing vectors. A particular metric is said to be invariant under a coordinate transformation as far as:

Guv = G (2') = g (2)
By applying an infinitesimal transformation:

o't =gt + e, e<< 1

The equation for the Killing vectors (generators of the symmetries) 1s obtained from the condition on the invariance of the metric:

s + &y =0

These symmetries on the metric tensor provide some conserved quantities (Noether’s theorem).

- Stationary spacetime: timelike Killing vector, invariance under time translations.

- Static spacetime: timelike Killing vector which 1s orthogonal to spacelike hypersurfaces.
- Homegeneous spacetime: spacelike Killing vector, invariance under spatial translations.
- Isotropic spacetime: spacelike Killing vector, invariance under spatial rotations.

- Maximally symmetric metric: for a n-dimensional spacetime, the maximum number of symmetries are:

1 n=
in(n + 1) %10




Null geodesics and light deflection

Let us get back to a general spherically symmetric spacetime given by the line element:
ds* = —A(r)dt* + B(r)dr* 4+ C(r)(d9? + sin® 0d¢?),

This spacetime has four killing vectors: one associated to time translations and the other ones to spatial rotations. Hence, we can
restrict the motion at a given latitude and the Killing vector fields of time translational and axial symmetries are:

t“((?”:(?t gb“@uz(%
The conserved quantities associated to these symmetries are the energy and angular momentum:
= —gutlk’ = A(r)t
L= gu¢"k” = C(r)o

We define the impact parameter for a particular photon trajectory:

L
E  A(r)i

N. Tsukamoto, Phys. Rev. D 95 064035 (2017).



Null geodesics and light deflection

Trajectory equation (we assume 0=x/2):

—A(P) 2+ B+ C(r) ¢t =0 — 72 =V (1), Vi(r) >0
Where
~ L*R(r) _ C(r)
Y= B oy B = 2oy ~ 1

We assume that R(r) has at least one positive root, such that a photon coming from infinity approaches the object and 1s scattered
at a minimum distance r=r0, where:

R(r) =0

And the impact parameter of such trajectory is given by:

pirg) = £ — Cooo _ [Co
COE S Ay VA

Circular trajectories:




Null geodesics and light deflection

The potential and its derivative satisty:
Vire)=0, V'(r.)=0

This critical curve will correspond 1n general to a maximum of the effective potential, leading to an unstable photon circular orbit,
also known as photon sphere.

The critical impact parameter for such an orbit is given by:

) =l /2

A photon with an impact parameter close to the critical one will turn around an arbitrary number of orbits before falling into the
object or getting away to infinity.

We are interested on computing the light trajectories and their deflection, so by removing the affine parameter we get the following
general equation for the trajectories:

Actual

2 posit‘ion
( dr ) R(r)C(r) Of g iy
—_— J— , ////
d¢ B(T) ,// Apparent
g position
. . . . . Sun /o of star
The deflection angle for a particular trajectory is given by: e ‘

> dr
ab) =1(b) —m, I(b) =2 .
() = 1) m=2] T e

B(r)




Ray-tracing

The procedure for the ray-tracing 1s very simple: takes a photon that reaches the observer’s detector (at infinity) and trace back its
trajectory to find the point where the photon was originated.

Metric:
rz(x) = 2% +qa° |
ds® = —A(z)dt* + A~ x)dx* + r(z)dQ?

Depending on the function A(x) and on the parameter a, this metric may describe a (regular) black hole or a (traversable)
wormbhole.

Trajectory equation:

Critical impact parameter:

b2 L T2 (ﬂfps)

o Alrps)

This gives the impact parameter for the null unstable circular orbit:

Verr (X = Xps) = 1/b5, Verr(X = Xps) = 0, Vir(x = xps) < 0



Ray-tracing

Trajectory equation:

do b

TPy

By assuming an accretion disk surrounding the central object, this equation gives the trace of all trajectories of the photons
arriving to observer’s screen emitted from the disk. We define the number of half-orbits around the central object by:

¢

T on

n

Which 1s used to define the different types of emission for an optically-thin accretion disk (transparent to their own radiation):

* Direct emission: trajectories intersecting the equatorial plane just once, n<3/4.
* [ensed emission: trajectories intersecting the equatorial plane twice, 3/4<n<5/4
® Photon ring emission: n>5/4.

The luminosity collected by the observer on the screen and the appearance of the demagnified rings will depend on the type of
emission.



Optically thin accretion disks and intensity profiles

The emission for a finite-size accretion disk 1s described by the radiative Boltzmann equation:

(@) - () e (35)

General Relativistic MagnetoHydroDynamic (GRMHD) simulations solve this equation by using a pool of assumptions upon all
these coetficients, while simplified analytical models can also be employed upon reasonable assumptions: zero absorptivity and

monochromatic emission. Moreover, we assume an infinitesimally thin disk, for which I/v3 1s conserved along a photon’s

trajectory and also an isotropic emission /(x) under three models whose intensity starts and peak at three relevant surfaces:

o Mod
o Mod

e Mod

-
beA
-
beA
-
beA

| I: Innermost stable circular orbit, decaying quadratically.
| II: Photon sphere, decaying quadratically.

| III: Event Horizon (if any), decaying with a more complex function.

Every intersection with the accretion disk, light rays pick up additional brightness. However, for n>3 intersections, the
corresponding light rings are so demagnified that their contribution to the total luminosity 1s negligible. Hence, the total intensity
received by the observer 1s corrected by two effects: gravitational redshift and collected luminosities, such that we get:

1 =% A@)1(2) |o=z,n(v)

S. E. Grill, D. E. Holz and R. Wald, Phys. Rev. D 100 024018 (2019).



Black holes’ mimickers: shadows

First type of models: a single photon sphere

2M
ds® = —A(x)dt* + B(x)dz® + r*(x)dQ? Alz) =B Hz) =1 (2) i (z) =2 +a?
r(x
Trajectory equation: e a=0 Schwarzschild black hole
® a<2M: regular Black hole
72 — biQ —V(z), o a>?M: a traversable wormhole.
n
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M. Guerrero, G. Olmo, D. Rubiera-Garcia, DS-CG, JCAP 08 036 (2021), [arXiv:2105.15073 [gr-qc]].
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Optical appearance: shadows

Model I of emission
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Optical appearance: shadows

Model 11 of emission

Black holes’ mimickers: shadows
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Optical appearance: shadows

Model I1I of emission

Black holes’ mimickers: shadows
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Black holes’ mimickers: shadows

Second type of models: double photon spheres M. Guerrero, G. Olmo, D. Rubiera-Garcia, DS-CG, arXiv:2202.03809
ds® = —A(x)dt® + B(x)dz? + r*(x)dQ° A(z) =B ! (z) =1 M *(v) = 2°+a’
§° = , (x) = T) = ($2+a2)3/2,r r) =x°+a” .
Trajectory equation: e a=0 Schwarzschild black hole
a 43
2 — biZ —Vi(z) s U< Y, < T\/_: two horizon black hole.
4\/5 a 2\/§ .
V(x) « —— <—XK : a traversable wormhole with two photon spheres.
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Ray-tracing
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Black holes’ mimickers: shadows

Optical appearance: shadows
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Ray-tracing: wormhole

Black holes’ mimickers: shadows

Outer photon sphere

Y

; e -
.
T

7 4

0

4

Inner photon sphere

~J N

™~ ﬂ(
]
~]




Black holes’ mimickers: shadows
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Conclusions and perspectives

Similar spacetime metrics characterising different objects might induce a different optical
appearance for far away observers.

We have just considered some very simple toy models of emission for the accretion disk but shown
that the background geometry might be of high importance on the location and relative luminosities

of the light rings.

Nevertheless, the physics of the accretion disk might not be possible to be disentangled from the
pure geometric effects.

We have not considered rotating objects, neither inclinations of the disk relative to the observer.

May future long base line interferometry be able to resolve the diffuse but sharp contribution from
light rings associated to multiple photon spheres?

The disentangle of the different effects associated to the background geometry might be a definite
test of the Kerr-family of solutions.
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Image of a Spherical Black Hole with Thin Accretion Disk, J. P. Luminet, Astron. Astrophys. 75,228 (1979).



