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For simplicity ¥ is compact.




The Hilbert space of pure states
0000000

Ground floor: space+time

We can develop ADM formalism of general relativity only on X,

the phase space of the theory is T*Riemm(X) with coordinates

(h¥(x), mjj(x)) and the diffeomorphism is fully implemented by
Lapse and Shift functions N, N'.

Schrodinger W.F
Y]

Classical F. T

Cauchy hypersurface
213

W J
% (A;
—

For simplicity ¥ is compact.




The Hilbert space of pure states
[e]e] Yololele}

First floor: Classical Field theory

Klein-Gordon Theory on Minkowsky.

82
Y § aet ) = (8- me(tR)

©(0,%) € C(X),
d

= (0,%) € C(%).
5 P(0:%) € (%)



The Hilbert space of pure states
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First floor: Classical Field theory

Schrédinger W.F

Klein-Gordon Theory on Minkowsky.

A [

82 3 3 23]
Z @@(t,X) = (A N m2)<p(t,x)
E I N
¢(0,X) € C2(%),
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%%




The Hilbert space of pure states
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First floor: Classical Field theory

The only relevant information is fixed over ¥ is the field configuration
©(X), and its time derivative 7(X).
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The Hilbert space of pure states
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First floor: Classical Field theory

savoanoerwf T he dynamics of the coupled system is given by a Hamiltoninan

| H = /d3x (N%(T) + Nijf(T)>
—_— ) — 3+ M)
| AT = st 4+ M
i ! i
% {7}:{7}M+{7}G




The Hilbert space of pure states
0000800

First floor: Classical Field theory

S::hrod.\lniel W.F %(T) — % _I_ %(M)
(T) _ (M)
! A = o+ A,
For the gravitational part this is
C\zss;:iFT 1 (21%) e -
H = 5= Gjymn — (2k)7"VhR(h)
2 Vh
% Hig = =20y = —2Dj(hian™) = —2hjo Djm
Cauchy h:p:\rsur‘mce While for the matter part we get

1 £
M) = \/EE[W2 + hiD;pDjp + m?¢?

%(M) = VhrDjy



The Hilbert space of pure states
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First floor: Classical Field theory

savoanoerwf T he dynamics of the coupled system is given by a Hamiltoninan

| H= / d3x (N%(T) n N’L;%”)

= {r={Im+{}ec

%
{}c= /Z dvoly <5hij(x)®57r’f(x)_5WU(X)®5hU(X)>’

Cauchy hypersurface
911

{Im= /)t d®x (8p(x) ® () = Ir(x) © F(x)) -




The Hilbert space of pure states
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Second floor: Quantum field theory

setrodinger wr To describe a quantum pure state W we must construct a
Hilbert space of W € L?(Dy) functions.

Classical F. T.
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The Hilbert space of pure states
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Second floor: Quantum field theory

Schrédinger W.F
213

Classical F. T.
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Cauchy hypersurface
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To describe a quantum pure state W we must construct a
Hilbert space of W € L?(Dy) functions.

e The field configurations over ¥ i.e. ¢ € CZ°(X) must be
in the domain of V.




The Hilbert space of pure states
0000000

Second floor: Quantum field theory

sehrsdinger wr To describe a quantum pure state W we must construct a
- Hilbert space of W € L?(Dy) functions.
e The field configurations over ¥ i.e. ¢ € CZ°(X) must be
in the domain of W.
e The measure Dy is gaussian probability and is part of the
quantum vacuum.

Classical F. T.
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The Hilbert space of pure states tization Evolution Further reading
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Second floor: Quantum field theory

schrsdinger W To describe a quantum pure state W we must construct a

Hilbert space of W € L?(Dy) functions.

e The field configurations over ¥ i.e. ¢ € CZ°(X) must be
in the domain of W.
e The measure Dy is gaussian probability and is part of the
quantum vacuum.

Classical F. T.
@13

No such a Borel Probability measure exist over C2°(X) but

Bochner-Minlos theorem ensures its existence over its strong
Cauchy hypersurface dual D/(Z)

/ 08 Dp(p) = e 2260
D/(¥)

—  Where A : C°(X) x C°(X) — R is a continuous bilinear.
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Hybrid Geometrodynamics

Hybrid Geometrodynamics:
A Hamiltonian description of classical gravity coupled to quantum matter.

J. L. Alonso," %% C. Bouthelier-Madre,'» %% J. Clemente-Gallardo,"%? and D. Martinez-Crespo':?

arXiv:2307.00922v1 [gr-qc] 3 Jul 2023
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Quantization
€000

Direct quantization

Lets attempt the naive quantization procedure

Qlip(x)] = p(x) and Qr(x)] = iz

< v(e) = LAV ()
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Quantization
€000

Direct quantization

< w(e) = LAV ()

This evolution operator leads to norm loss in the evolution for a variety of
non trivial space-times

Classical versus quantum completeness

Stefan Hofnmnnl' and Marc S(‘hneiderl'
L Arnold Sommerfeld Center for Theoretical Physics, Theresienstrafie 37, 80333 Miinchen
(Dated: June 26, 2015)

The notion of quantum-mechanical completeness is adapted to situations where the only ade-
quate description is in terms of quantum field theory in curved space-times. It is then shown that
Schwarzschild black holes, although geodesically incomplete, are quantum complete.

PACS numbers: 03.65.-w, 03.65.Db, 03.70.4+k, 04.20.Dw, 11.10.-z, 11.10.Ef.
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Quantization
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Quantization on a Cauchy hypersurface

We will analyze the problem of how to implement a dynamical equation
and quantization procedure that preserves the norm in the evolution.
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Quantization on a Cauchy hypersurface

First we pause time and describe the quantization procedure over ¥

2
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Quantization on a Cauchy hypersurface

First we pause time and describe the quantization procedure over ¥

Schradinger W.F

{Im= /z d*x (Sp(x) ® Or(x) = Or(x) ® Bp(x))

Classical F. T.
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Quantization on a Cauchy hypersurface

First we pause time and describe the quantization procedure over ¥

Schradinger W.F

s Wy = /z d3x dr(x) A do(x)

Classical F. T.
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d |

Cauchy hypersurface
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Quantization on a Cauchy hypersurface

First we pause time and describe the quantization procedure over ¥

Schradinger W.F

20 wy = / d®x dr(x) A dp(x)
PN

For quantization we need a Hilbert space, then we need a
Kahler structure (i, w, J) such that u(,) = w(, —J)

A AL ([ det
iila= (&Pyyawy)( DY _(At)§ > < dix >

% —  with Ayy > 0> Dyy and J/2\/IF =-1
Cauchy hypersurface
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Quantization on a Cauchy hypersurface

First we pause time and describe the quantization procedure over ¥

Schradinger W.F

s Wy = /z d3x dr(x) A do(x)

In Klein Gordon

w(5)-{(% ) -7 (%)
S|

Cauchy hypersurface F Fa N’DI N
~ \ =ND'D; — (D'N)D; + Nm?> N'D; + D;N'
JMF = ‘F|_1F7
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Quantization on a Cauchy hypersurface

First we pause time and describe the quantization procedure over ¥

Schrodinger W.F

Cauchy hypersu

3

wy = | d®x dr(x) A dp(x)
PN
AL A% dp*™

JMF 3 (a@“ aﬂ'y) D)}(’ —(At)§ dmx

AL L d*
UMe = d(p}’7 dnY 7 Y. N
F ( ) _A}t/x —Dyx dT['

Schrodinger representation for a scalar field on curved spacetime

Alejandro Corichi*
Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de México, Apartado Postal 70-543, México D.F. 04510, México,

Department of Physics and Astronomy, University of Mississippi, University, Mississippi 38677,
and Perimeter Institute for Theoretical Physics, 35 King Road North, Waterloo, Ontario, Canada

2m9

Jerénimo Cortez’ and Hernando Quevedo®
Instituto de Ciencias Nucleares, Universidad Nacional Auténoma de México, Apartado Postal 70-543, México D.F. 04510, México
(Received 25 July 2002: published 30 October 2002)
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Geometric Quantization

Schradinger W.F
oy

The geometric quantization procedure provides a recipe, up to
ordering problems, for the phase space of the theory

2 [alalg [BANOCRY dy*
IM¢ _(()py,dﬂy)( D} - ) ( e )

Classical F. T.
213

. e 4 L x:
/ Dus(p*)e'™¥" = e~ 184", G
N

chy hypersurface
223
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Quantization
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Geometric Quantization

The geometric quantization procedure provides a recipe, up to
ordering problems, for the phase space of the theory

2(D'(), Dus), with | Dps()es?” — e iea7,
D'(x%)
Fot the operators, with K the inverse of A, we get
Qe )@ (¢*) = ¢ ®(¢%),
Qmy )P(¢*) = (—i0pr + ip* Kzy — @ (KA)xy) P(£%).

Schridinger W.F
u

=

Cauc

chy hypersurface
223
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Geometric Quantization

L*(D'(X), Dus), with / Dus(¢*)e™™ = e —EAVEy I
D'(¥)
%
Q™ )0(¥") = ¢ b(¥"), E——
Q(my)®(¢*) = (—i0py + ip*Kzy — ™ (KA)xy) ®(¢%). o
Geometric flavours of Quantum Field theory on a Couchy Typersutece
Cauchy hypersurface. Part I: Geometric quantization
José Luis Alonsol®3 Carlos Bouthelier-Madre! 2 Jestis

Clemente-Gallardo'?3, and David Martinez-Crespo’#

arXiv:2306.14844v1 [math-ph] 26 Jun 2022



Evolution
00000

Time dependence

The norm loss comes from the fact that both L2(A”, Dus) and Q depend

on time
& [Blaly |BAN\CAE WA
Irme = (Opy, Onv) ( D} - ) ( dm )

e X sl X
D;Ls(n,o")e'f"* — e~ 1A%y
JN?

QP )P(¢*) = p (%),
Q(my ) (%) = (—i0py + ip"Kzy — ¢ (KA)xy) ®(£%).
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Evolution
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Second quantized Kahler structure

The norm loss is characterized by a second quantized Kahler structure.

Schrédinger W.F
213

(W1, W) — G(Vy,W5) — I'Q(Wl,\l’z)_

2

T = i(dV® © Bys — dV’ © O5)

Classical F. T.
w11

——
Cauchy hypersurface
w11
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Evolution
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Second quantized Kahler structure

The norm loss is characterized by a second quantized Kahler structure.

Schrédinger W.F

G(V1,Vy) — iQ(Vy, V)
(V1,Wy) = 3 : %
T = i(dV® @ dye — dV’ ® D7) —
The Schrodinger equation is given by the associated T
Poisson bracket structure
d : A
2V = XV with Xy = { (v, H\U)} =
The only aIIowedAobservabIes are quadratic functions
fe(V, V) = (V, GV)
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Evolution
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Connection term

Our solution to this problem is to consider W a section of a bundle B — R
whose locally equivalent to

L*(D'(X), Dus(t)) x R
. With this we substitute the time derivative by a covariant time derivative

Vt\IJ - 8t\|l + r\li
such that V,G = V:;Q =V;J = 0.
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Evolution
00e00

Connection term

Our solution to this problem is to consider W a section of a bundle B — R
whose locally equivalent to

L*(D'(X), Dus(t)) x R
. With this we substitute the time derivative by a covariant time derivative

Vt\IJ - 8t\|l + r\li

such that V,G = V:;Q =V;J = 0.

We also need to modify the quantization procedure to get
V:Q(F) = Q(0+F)

for a sufficient class of F assuming that the canonical coordinates
©(x), m(x) are independent on time.
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Evolution
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If we assume that the canonical coordinates o(x), 7(x) are independent on
time, we should treat them as exchangeable coordinates in our
construction.

y ,x
J_, Mg (()AV ()4-!/ A‘ x

Dlls ei6x¢™ \ o= 1AV Ey

(%)
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Evolution
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If we assume that the canonical coordinates ¢(x), (x) are independent on
time, we should treat them as exchangeable coordinates in our

construction.
20  (90h!
ot ot

This choice preserves the Kahler structure.

~ Aot
T
ot |2 (2]

- 1
Vi@=3 o~ \or
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Evolution
[e]e]e] o]

If we assume that the canonical coordinates ¢(x), (x) are independent on
time, we should treat them as exchangeable coordinates in our

construction.
20  (90h!
ot ot

This choice preserves the Kahler structure.
To relate also the quantization we should factorize ¥ = WoW,, where Wy, is
the Hilbert space state and Wy is part of the vacuum. Asking for

~ Aot
T
ot |2 (2]

- 1
Vi@=3 o~ \or

i
Wy = exp <—2¢X(KA)xysoy>

we expect to be able to recover V,Q(F) = Q(0:F)
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The modified schrodinger equation

VU =00 + TV = —JQ(H)V

In the holomorphic picture

xxAxygyz/zddx\/EX(X)\/_ND,-Di_(év,-N)DiJerzS(X) (1)

h

9 1¢YKyZAZXa¢,X} W= [H+%¢Y(Ky2Azx = ﬂ<p(x)53(x — ¥))0p ]V

13-
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Further reading
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Further reading

Geometric flavours of Quantum Field theory on a
Cauchy hypersurface. Part 1. Geometric quantization

José Luis Alonso!?# Carlos Bouthelier-Madre! %3 Jesiis
Clemente-Gallardo'??, and David Martinez-Crespo’*

arXiv:2306.14844v1 [math-phl 26 Jun 2022
Geometric flavours of Quantum Field theory
on a Cauchy hypersurface. Part II: Methods

of quantization and evolution

José Luis Alonso>?3, Carlos Bouthelier-Madre®?3, Jests
Clemente-Gallardo'?*" and David Martinez-Crespo's
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Further reading

Hybrid Geometrodynamics:

A Hamiltonian description of classical gravity coupled to quantum matter.

J. L. Alonso,"** C. Bouthelier-Madre,"%? J. Clemente-Gallardo,"*# and D. Martinez-Crespo':?

arXiv:2307.00922v1 [gr-qc] 3 Jul 2023
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Thank You So Much! )
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