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Introduction

▶ The Casimir effect refers to the force that emerges between
two bodies when these come into close contact.

Not this!!

▶ It is an effect that appears between neutral objects at distances
of the order of hundred micrometers down to nanometers.

▶ It has quantum origin with macroscopic consequences. It is
due to the fluctuating fields. For that reason, it could be
realized in the quantum fluctuations of any kind of field.

▶ Casimir discovered the phenomenon thinking about a situation
involving fluctuating electromagnetic fields.
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Hendrik Brugt Gerhard Casimir (1909-2000)

He was a dutch physicist and humanist.
During his PhD studies at the University of Leiden he would visit
Copenhagen where he meet Niels Bohr and who later would
contribute to bring Casimir into the right path of thinking.
Casimir was working at the Philips Research Labs when he got
interested on the disagreement between theory and experiments in
colloidal systems.



The trigger

Here is what happened.During
a visit I paid to Copenhagen ,
it must have been in 1946 or
1947, Bohr asked me what I
had been doing and I explained
our work on van der Waals
forces. “That is nice” he said,
“that is something new”. I then

explained I should like to find a simple and elegant derivation of my
results. Bohr thought this over, then mumbled something like “must
have something to do with the zero-point energy”. That was all,
but in retrospect I have to admit that I owe much to this remark.
Casimir realized that in a similar way as we consider particles
fluctuating inside atoms, he could consider electromagnetic field
fluctuations in the vacuum, the “zero point fluctuations”.



The basic nature of quantum physics is fluctuations

∆q∆p ≥ ℏ
2
, [q, p] = iℏ

The Hamiltonian does not commute with neither of them so in an
energy eigenstate both ∆q > 0 and ∆p > 0. Consequently
En = ℏω(n+ 1/2).

▶ Each point in space can be associated with a quantum
fluctuation of the ’electromagnetic field’.

▶ The vacuum of QFT can be considered as an extremely
large collection of harmonic oscillators, each with energy
En = ℏω(n+ 1/2).

▶ Ground state n = 0. The energy is E0 =
∑

k
1
2ℏωk, the

Zero Point Energy, ZPE.



▶ The presence of conducting
parallel plates imposes boundary
conditions on the
electromagnetic field

E⃗×n̂|plates = 0, B⃗·n̂|plates = 0

▶ This modifies the frequency of the radiation field.

The zero point energy undergoes a change due to the
presence of the parallel plates that imposes restrictions on
the electromagnetic fields.

The possible modes of the EM field are now restricted
by the presence of the boundaries. Consequently, the
zero point energy acquire different allowed frequencies,

E0pp =
∑
k

1

2
ℏω̄kpp
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If we now subtract the vacuum, the energy per unit area is

ECas = ĺım
s→0

[∑
k

1

2
ℏω̄kpp(s)−

∑
k

1

2
ℏωk(s)

]
= − π2

1440a3

where s is a renormalization parameter. More of this later.

The Casimir effect gives rise to a force manifested by the change of
the zero-point energy of a quantized field due to the presence of
boundary conditions,

F = −2∂E
∂a

= − 2π2

480a4



The need to renormalize
• The fluctuations of the field =⇒ harmonic oscillator at each
point ωk = c

√
k2 where k = (kx, ky, kz). Then

Evac =
∑
k

1

2
ℏω̄k =

∫ ∞

−∞

1

2

dk

(2π)3
ℏc|k| =∞

• The presence of the boundaries =⇒ changes the frequency of
vibration of the fields ωk′ . It confines the modes in the normal
direction to the plane defined by the plates restricting the values of
the momentum in that direction k = (kx, ky,

πn
a ),

Epp =
∑
k′

1

2
ℏω̄k′ =

∫ ∞

−∞

1

2

dk

(2π)3
ℏc

√
k2
⊥ +

(
πn

a

)2

=∞

and gives rise to a different infinite energy.
• Casimir energy,

ECas =
∑
k

1

2
ℏω̄k −

∑
k′

1

2
ℏωk′ =∞−∞
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Source theory
In quantum field theory we need to evaluate expressions that
involve the vacuum expectation value of the fields, which relates to
the Green’s function by < Tϕ(x)ϕ(x) >= −iG(x, x).

Let’s start with the Lagrangian for a
scalar field ϕ interacting with two delta
potentials

L = −1

2
∂µϕ∂

µϕ− 1

2
V (z)ϕ2,

where V (z) = λδ(z) + λ′δ(z − a) and
λ, λ′ are the coupling constants.

For Dirichlet b.c. they go to infinity and ϕ(0), ϕ(a)→ 0.
The geometry of the problem allows us to write,

G(x, x′) =

∫
dk⊥
(2π)2

eik⊥·(x⊥−x′
⊥)

∫
dω

2π
eiω(t−t′)g(z, z′),

where the reduced green function satisfies the equation of motion,



Green’s functions[
− d2

dz2
+ κ2 + λδ(z) + λ′δ(z − a)

]
g(z, z′) = δ(z − z′),

where
▶ κ2 = k2⊥ − ω2,
▶ g(z, z′) is the reduced Green function
▶ there is symmetry in the transverse components.

In the absence of plates, the free Green function satisfies(
− d2

dz2
+ κ2

)
g0(z − z′) = δ(z − z′),

We can now calculate the force on the places or the energy between
the place by making use of the energy momentum tensor,

⟨Tµν⟩ =
(
∂µ∂ν ′ − 1

2
gµνL

)
1

i
G(x, x′)

∣∣∣∣∣
x=x′

.
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Two ways:
▶ Normal component Tzz′ Pressure on the plate at z = a is the

difference,

F =

∫
dk⊥
(2π)2

∫
dω

2π

(
⟨tzz′⟩in

∣∣
z=z′=a

− ⟨tzz⟩out
∣∣
z=z′=a

)
▶ Energy component, T00 Large λ corresponds to Dirichlet bc,
F ∼ − π2

480a4

We can also compute the energy,

E =

∫
dr⟨T 00⟩

from where we can extract the previous shown result. We also
have the relation

F = −∂E
∂a

.

▶ Both expressions have to be renormalized. Regardless the
renormalization method, both must give the same value.



Fractal←→ Self-similarity

We understand by fractal a geometrical figure, in which similar
patterns recur at progressively smaller and/or bigger scales.

We have worked in some self-similar configurations,
▶ δ-function plates positioned at points given by the series

∞∑
n=0

a

2n
and

∞∑
n=0

2na

▶ δ-function plates located at points of a Cantor set,
▶ Sierpinski triangle and other geometrical figures of the same

kind.
and calculate the Casimir energy in two independent ways.



Two δ-function plates

E = E0 +∆E1 +∆E2 +∆E12(a)

▶ The first three terms on the right
diverge.

▶ If we impose Dirichlet boundary
conditions, the interaction energy
between the plates is

∆E12(a) = −
π2

1440a3
.



Self-similar δ-function plates at points a
2n

Let’s consider a geometric sequence of parallel plates a
2n

z
=

a

z
=

a 2

z
=

a 4

z
=

a 8

z
=

0

                  

Object 2

{

Object 1

E0 +
∞
∑

i=1

∆Ei +∆E(a)
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Self-similar δ-function plates. Dirichlet b.c.

The interaction energy is a function of only a:

∆E(a) = ∆E(a/2) + ∆E12(a),
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∆E12(a) is the interaction energy between plates at z = a
2 and z = a,

∆E12(a) = −
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Casimir interaction energy per unit area for our set of plates

∆E(a) = +
8

7

π2

1440a3
(positive sign)



Self-similar δ-plates at points 2na
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∆E(2a) = ∆E(4a)−
π2

1440(2a)3

Where we have assumed Dirichlet boundary conditions.
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Both sequences of plates
The interaction energy between the two objects defined above is

∆Etotal(a) = ∆Eobject1 +∆Eobject2 +∆E12.

We have already calculated every term using Dirichlet b.c.,
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Both sequences of plates
The interaction energy between the two objects defined above is
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We have already calculated every term using Dirichlet b.c.,
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∆Eobject2 = ∆E(2a) = −
1

7
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1440a3

∆E12(a) = −
π2

1440a3

Put together we find,

∆Etot(a) = +
8

7

π2

1440a3
−

1

7

π2

1440a3
−

π2

1440a3
= 0

Both stacks of plates balance each other with opposite tendences
so that together they contribute to cero.



A very ‘singular’ potential
Consider a scalar massless field.

L ≡ 1

2
(∂τϕ)

2 − 1

2
δij∂iϕ∂jϕ− Vδ-δ′(r)ϕ

2.

General matching conditions of a scalar field interacting with two
singular potentials with support on the boundary of two concentric
spheres.

	  
	  
	  

V(r2) 

V(r1) r1 

r2 

Vδ-δ′(r) ≡
2∑

i=1

ai δ(r − ri) + bi δ
′(r − ri)

ai, bi ∈ R, r1 < r2.

We have two interacting non intersecting
bodies. We can use the TGTG formula,

EC =
ℏ
2π

∫ ∞

0
dξTr ln (I−M(iξ)) , M = T1G0

12T2G0
21.

Where T1 and T2 are the transition matrices or the
Lippmann-Schwinger T-operator associated to each object



Numerical results, V =
∑2

i [αiδ(x− xi) + βiδ
′(x− xi)]

We show results from the numerical calculation in different
situations.

α1 = α2 = w0

β1 = β2 = w1

Left, x1 = 1, 8, and x2 = 2. Right x1 = 1, and x2 = 2.
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Self-energy of a δ − δ’ sphere
Self energies are more difficult to deal with in terms of divergences
and one can not always extract a finite part.
The Casimir energy can be studied by making use of the zeta
function,

E0 =
µ2s

2

∑
n

ω1−2s
n =

µ2s

2
ζP (s−

1

2
),

and evaluate it at s→ 0, where µ is a parameter with dimensions
of mass introduced to keep the right dimensions and ℏ = c = 1.
The zeta function associated with the operator determining the
modes of the system is

ζP (s) =
∑
n

λ−s
n , Pφn(x) = λnφn(x).

that is connected to the heat kernel function K(t) through the
Melling transform,

ζ(s) =

∫ ∞

0
dt

ts−1

Γ(s)
K(t),

where



where
K(t) :=

∑
n

exp−λnt .

The asymptotic expansion for small t is

K(t) ∼ 1

(4πt)3/2

∑
n

an/2t
n/2.

Having the coefficient a2 ̸= 0 is a guarantee that the self-energy of
the system is finite.
Of course that does not imply that we find divergences in the way,
which after adding and subtracting asymptotic terms, we find the
expression

a2 =
2π

(
128λ3

1 + 140λ2
0λ1r

2
0 − 35λ3

0r
3
0 − 224λ0λ

2
1r0

)
105

(
λ2
1 + 1

)3
r0

,

that happens to be zero when c0λ1 = λ0r0, c0 ≃ 1,20818671192.
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