Detecting (high frequency) gravitational waves in a box

based on 2112.11465 (PRD22) + 2303.01518 (PRD23)

(w. A. Berlin, DB, R. T. D'Agnolo, S. Ellis, R. Harnik, Y. Kahn, J. Schütte-Engel, M. Wentzel)

2312.02270 [hep-ph] P. Navarro, B. Gimeno, J. Monzón-Cabrera, A. Díaz-Morcillo

gobierno De españa

Generalitat de Catalunya Departament de Recerca i Universitats

GWs (essentials)

c = 1

 $\rho_{\rm gw} = \frac{16}{16}$ $\Omega_{\rm gw}(f) \equiv \frac{1}{\rho_c} \frac{\mathrm{d}\rho_{\rm gy}}{\mathrm{d}(\ln f)}$ $h^2 \Omega_{\rm gw}(f) \qquad h \approx 0.67$

- Perturbations of space-time travelling as waves of frequency f
- Characterised by 2 polarizations $h_{+,\times}$ (dimensionless)
 - $h_{+.\times} \approx h_0 \cos\left(2\pi f(t-z) + \phi\right)$
 - GWs carry energy. They have energy density

$$\frac{1}{6\pi G}\left\langle \dot{h}_{+}^{2}+\dot{h}_{\times}^{2}\right\rangle$$

$$\frac{g_{\rm w}}{f} \qquad \rho_c = 1.2 \times 10^{11} M_{\odot} \,{\rm Mpc}^{-3} \\ \sim {\rm keV/cm}^3$$

UHFGWs -> Laboratory searches

- GWs interact with **every** source of energy-momentum!
 - in the laboratory
 - Interaction GWs with **light**
 - Interaction GWs with **matter external dofs**
 - Interaction GWs with spin or other internal dofs
- we have a lot to learn from DM searches!

 $j_{\text{eff}}^{\mu} = -\partial_{\beta} \left(\frac{1}{2} h F^{\mu\beta} + h_{\alpha}^{\beta} F^{\alpha\mu} - h_{\alpha}^{\mu} F^{\alpha\beta} \right)$

analogy with **axions** + EM field -> EM field

GWs and EM fields Raffelt Stodolsky 87 GWs + EM field -> EM field $\mathcal{L} = \sqrt{-g} \left(R + F_{\mu\nu} F^{\mu\nu} \right) \supset \frac{1}{2} A_{\mu} j_{\text{eff}}^{\mu}(h) + \eta^{\mu\alpha} \eta^{\nu\beta} F_{\mu\nu} F_{\alpha\beta} + O(h^2)$

(Safdi's talk)

Connection to axions

waves of (a priori) laboratory size

This already sets the scale of the GW we want to measure: for resonant production (for constant \overrightarrow{B}) $\lambda_{gw} \approx L$

LISA Sources

Amaro-Seoane et al. 1702.00786

Sources of UHFGW: spoiler!

Sources of UHFGW: spoiler!

Searching for GWs with light

 $\mathcal{L} = \sqrt{-g} \left(R + F_{\mu\nu} F^{\mu\nu} \right) \supset \frac{1}{2} A_{\mu} j_{\text{eff}}^{\mu}(h) + \eta^{\mu\alpha} \eta^{\nu\beta} F_{\mu\nu} F_{\alpha\beta} + O(h^2)$ $j_{\rm eff}^{\mu} = -\partial_{\beta} \left(\frac{1}{2} h F^{\mu\beta} + h_{\alpha}^{\beta} F^{\alpha\mu} - h_{\alpha}^{\mu} F^{\alpha\beta} \right)$

$$j_{\text{eff}}^{\mu} = -\partial_{\beta} \left(\frac{1}{2} h F^{\mu\beta} + h_{\alpha}^{\beta} F^{\alpha\mu} - h_{\alpha}^{\mu} F^{\alpha\beta} \right)$$

$$E(x,t) = \sum E_{sn}(x,t) + E_{in}(x,t)$$

$$f$$

$$solenoidal \quad \text{irrotational}$$

$$E_{sn}(x,t) = e_{sn}(t) E_{sn}(x)$$

$$E_{in}(x,t) = e_{in}(t) E_{in}(x)$$

$$\left(\omega_{sm}^2 + \partial_t^2 + \sigma_{sm}\partial_t\right)e_{sm}(t) = e^{-t}$$
$$\left(\partial_t^2 + \sigma_{im}\partial_t\right)e_{im}(t) = e^{-t}$$

'source' (here we want to maximise. It is also directional)

From axions to GWs

$$\int_{V_{cav}}^{2} \left(\frac{C}{0.4}\right) \left(\frac{g_{\gamma}}{0.97}\right)^{2} \left(\frac{\rho_{a}}{0.45 \text{GeV cm}^{-3}}\right) \left(\frac{f}{650 \text{MHz}}\right) \left(\frac{Q}{50,00}\right)^{2}$$
quadratic in axion field and in *h*

$$\frac{1 \text{ m}^{3}}{V_{cav}}\int_{V_{cav}}^{5/6} \left(\frac{10^{5}}{Q}\right)^{1/2} \left(\frac{T_{\text{sys}}}{1 \text{ K}}\right)^{1/2} \left(\frac{\Delta\nu}{10 \text{ kHz}}\right)^{1/4} \left(\frac{1 \text{ min}}{t_{\text{int}}}\right)^{1/4}$$

Projected Sensitivities of Axion Experiments

A very exploratory field... we still need to **deeply think what's better** for the future do we move to something else ?

And now for something completely different...

LIGO lesson

A very exploratory field... we still need to deeply think what's better for the future

do we move to something else?

And now for something completely different...

For continuous gravitational waves, the minimum detectable gravitational wave metric spectral density is then

Rainer Weiss, ca. 1972

LIGO concept Weiss 1972

$$h^{2}(f) > \frac{4}{f^{2}} \frac{\Delta x_{n}^{2}(f)}{\Delta f} \approx \frac{4 \times 10^{-33}}{f^{2}(cm)} Hz^{-1}.$$

Recycling axion experiments II

Mechanical-coupling (shaking the walls)

dynamical Casimir?

MAGO design from CERN (gr-qc/0502054) Berlin, DB et al 2303.01518

MAGO set-up

(Microwave Apparatus for Gravitational Waves Observation)

GWs exciting solids

$$dm \left(\frac{\partial^2 u}{\partial t^2} - v_s^2 \frac{\partial^2 u}{\partial x^2} \right) = dF_x(t, x),$$
$$dF_i = \frac{1}{2} \ddot{h}_{ij}^{TT} x^j dm$$

dm(x+u(x,t))

$$\mathbf{u}(\mathbf{x},t) = u_p(t)\mathbf{u}_p(\mathbf{x})$$

- searched for many years (Weber bars)
- a solid affected by a external source (e.g. x direction)

In terms of eigenmodes:

 $\mathbf{u}(\mathbf{x},t) = u_p(t)\mathbf{u}_p(\mathbf{x})$

$$\begin{split} \ddot{u}_p + \frac{\omega_p}{Q_p} \dot{u}_p + \omega_p^2 u_p \simeq -\frac{1}{2} \omega_g^2 V_{\text{cav}}^{1/3} \eta_{\text{mech}}^g h_0 e^{i\omega_g t} \\ \eta_{\text{mech}}^g = \frac{\hat{h}_{ij}^{\text{TT}}}{V_{\text{cav}}^{1/3} V_{\text{shell}}} \int_{V_{\text{shell}}} d^3 \mathbf{x} U_p^{*i} x^j \end{split}$$

this rings the solid (Weber bars)

GWs exciting solids

MAGO set-up: read-out from mode mixing

$\boldsymbol{E}_{sn}(\boldsymbol{x},t) = e_{sn}(t)\boldsymbol{E}_{sn}(\boldsymbol{x})$

 $\left(\partial_t^2 + \omega_n^2\right) e_n \simeq -\omega_n e_m \frac{\int_{\Delta V} d^3 \mathbf{x} \left(\omega_n \mathbf{E}_m \cdot \mathbf{E}_n^* - \omega_m \mathbf{B}_m \cdot \mathbf{B}_n^*\right)}{\int_{V_0} d^3 \mathbf{x} \left|\mathbf{E}_n\right|^2}$

modes are not orthogonal in ΔV

 $Q_m \sim 10^6$

Estimates

A. Berlin, DB, R.T. D'Agnolo, S. Ellis, R. Harnik, Y. Kahn, J. Schütte-Engel, M. Wentze 2303.01518

A word on sources GW coupling to spin

Dirac equation in GR $i\gamma^{\dot{\alpha}}e^{\mu}_{\hat{\alpha}}$ (NR limit

Linear in GW $Q_{ij} \supset -\frac{2}{3}\delta_{ij}\ddot{h}_{kl}\Big|_{\pi=0} x^k x^l$

e.g. Ito and Soda 20

$$\left(\partial_{\mu}-\Gamma_{\mu}-ieA_{\mu}
ight)\psi=m\psi\;,$$

 $h^{\mu\nu}$

Reach of $h_0 \sim 10^{-23}$ possible (100 kHz-GHz), though far from known signals 業

Summary and outlook

- 'ADMX' like $\omega = \omega_g$ Heterodyne $\omega_2 = \omega_g \pm \omega_1$

A very exploratory field... we still need to **deeply think what's better** for this endeavour

Rainer Weiss, ca. 1972

For continuous gravitational waves, the minimum detectable gravitational wave metric spectral density is then

$$h^{2}(f) > \frac{4}{f^{2}} \frac{\Delta x_{n}^{2}(f)}{\Delta f} \approx \frac{4 \times 10^{-33}}{f^{2}(cm)}$$

Outlook

 Hz^{-1} .

 $\omega_1 - \omega_0 = \omega_q$

Response

 $\omega_1 - \omega_0 = \min \omega_p \sim 10 \,\mathrm{kHz}$