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Quantum Gravity Theories

@ Attempts of unification: string theory, loop quantum gravity,
supergravity, causal set theory...

@ In most of them a minimal length appears = Planck length
(Ip)??

@ This is closely related to an energy scale = Planck energy
(N)?7?

@ Problem: there are no experimental evidences of a fundamental

QGT
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Spacetime: the last frontier

o Classical spacetime — “quantum’ spacetime

e Symmetries? — LI should be broken/deformed at Planckian
scales

o New effects — Micro black holes creation?

@ Spacetime can be regarded as a “foam”
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Lorentz invariance violation (LIV)

@ This possibility was first considered in 60's
@ There is a loss of the relativity principle

@ There is a privileged observer — physical laws depending on
the observer
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@ There is a relativity principle

@ Two invariants in every inertial frame: speed of light ¢ and
Planck length /p
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Kinematics

Ingoing particles |:> Interaction |:> Outgoing particles
past CQ future O

@ Incoming and outgoing particles movement is described by the
dispersion relation

@ In the interaction, the conservation of total momentum holds
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Kinematics in DSR

@ Dispersion relation

o Conservation laws

Puqo

Total momentum = (p® q)y = pu+ qu + A

@ Dispersion relation and conservation law compatible with
relativity principle — deformed Lorentz transformations

+ ...



@ r-Poincaré: very much studied model appearing in the context
of Hopf algebras [Majid and Ruegg, 1994]



Kinematics in DSR
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@ Particular example: classical basis [Borowiec and Pachol, 2010]
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Kinematics in DSR

o k-Poincaré: very much studied model appearing in the context
of Hopf algebras [Majid and Ruegg, 1994]

@ Particular example: classical basis [Borowiec and Pachol, 2010]

5q

q0
(P& q)o = potqo+—1=, (P@q)izp;(1+—)+q;

A

@ Snyder kinematics [Battisti and Meljanac, 2010]
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Implementation of locality

@ From an action
s= [ dr S [on50) + M) [ Om) - |
> i=1,2

+ /0 Tary <) (DB + Nagy(7) [C(pHO () = ]|

Jj=1,2

+¢ ("M @ p~@),(0) - (" & p*@),.(0)]

one finds

@ When &# = 0 the interaction is local xﬁ(i)(O) = XJ’iU)(O) =0

@ Phenomenological consequences: time delay of flight of
high-energy particles
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Our geometrical perspective [Carmona et al., 2019]

@ Dispersion relation — Squared distance from the origin to k
[Amelino-Camelia et al., 2011]

@ Translations, deformed “Lorentz” generators — 10 isometries
of the metric!

@ Only a maximally symmetric momentum space satisfies this!
— Minkowski, de Sitter or anti de Sitter
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Relative locality from geometry [Relancio, 2021]

@ Extension of geometry in momentum space to phase
space [Relancio and Liberati, 2020]

@ Composition law as isometries

g""(q)dqudg, = g"" (p®q)d(p®q),d(peq),

@ In spacetime the composition law is not an isometry

gu (p @ k) dxt'dx” + g (p@ k)d (p® k), d(p @ k), #
gu(k)dxtdx” + g (k)dk,dk,
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Relative locality from geometry [Relancio, 2021]

@ We need to consider a different space-time point

gu (p® q) d§"de” + g (p® q)d (p® q), d (p® k), =
8uv(p)dx"dx” + g™ (p)dp,.dp,

where

o _Apek), L ek,

oEv ok, ok,

@ Problem: how to obtain relative locality for the other particle?

@ Solution: consider a two-particle line element with an
8-dimensional (momentum dependent) metric

@ This metric can be obtained by imposing that the composition
law and Lorentz transformations are isometries
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Momentum and space-time curvature

SR — GR = flat spacetime — curved spacetime

SR — DSR = flat momentum space — curved momentum
space!

GR — DGR?— curved phase space?

This leads to a metric depending on all phase-space
variables [Relancio and Liberati, 2020]

@ This metric possesses the symmetries of the relativistic
deformed kinematics for each fixed space-time point
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Relative locality from geometry [Mercati and Relancio, 2023]

@ It is not possible to generalize the action for obtaining relative
locality in curved spacetimes

@ But it is possible from our geometrical setup
@ The new (differential) equations of relative locality are

ayt oIpeq), ozt , 9(P® q)
pe ) = O = Goel(e) = e — 5

with (P;wqu) (&:(y)pv:€.(2)qy), e the space-time tetrad
and &, its inverse
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Results

@ We have studied the composition law of k-Poincaré and
Snyder kinematics for de Sitter and Schwarzschild spacetimes

@ We restricted ourselves only to dominant term in the
high-energy scale A

@ We find that the usual notion of GR is preserved in this scheme

@ This means that our construction of DGR is compatible with
horizons
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Conclusions

@ We have developed a geometrical interpretation of relative
locality

@ This interpretation allowed us to extend relative locality to
curved spacetimes

o We find that relative locality is compatible with the usual GR
notion of horizon

@ This was checked for two different kinematics, but only with
the dominant deformation term

o Future work: extend the work at all order in A and for different
horizons



Thanks for your attention!
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