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Implementation of locality

From an action

S =
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one finds
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When ξµ = 0 the interaction is local xµ−(i)(0) = xµ+(j)(0) = 0

Phenomenological consequences: time delay of flight of
high-energy particles
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This metric possesses the symmetries of the relativistic
deformed kinematics for each fixed space-time point
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It is not possible to generalize the action for obtaining relative
locality in curved spacetimes

But it is possible from our geometrical setup
The new (differential) equations of relative locality are

∂yµ

∂ξν
eσµ(y) = eρν (ξ)

∂ (p̄ ⊕ q̄)ρ
∂p̄σ
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∂ξν
eσµ(z) = eρν (ξ)

∂ (p̄ ⊕ q̄)ρ
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with (p̄µ, q̄µ) = (ēνµ(y)pν , ē
ν
µ(z)qν), e

ρ
ν the space-time tetrad

and ēνµ its inverse
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Thanks for your attention!



Amelino-Camelia, G., Freidel, L., Kowalski-Glikman, J., and
Smolin, L. (2011).
The principle of relative locality.
Phys. Rev., D84:084010.

Battisti, M. V. and Meljanac, S. (2010).
Scalar Field Theory on Non-commutative Snyder Space-Time.
Phys. Rev., D82:024028.

Borowiec, A. and Pachol, A. (2010).
Classical basis for kappa-Poincare algebra and doubly special
relativity theories.
J. Phys., A43:045203.

Carmona, J. M., Cortés, J. L., and Relancio, J. J. (2019).
Relativistic deformed kinematics from momentum space
geometry.
Phys. Rev., D100(10):104031.

Majid, S. and Ruegg, H. (1994).



Bicrossproduct structure of kappa Poincare group and
noncommutative geometry.
Phys. Lett., B334:348–354.

Mercati, F. and Relancio, J. J. (2023).
Relative Locality in curved spacetimes and event horizons.

Relancio, J. J. (2021).
Geometry of multiparticle systems with a relativistic deformed
kinematics and the relative locality principle.
Phys. Rev. D, 104(2):024017.

Relancio, J. J. and Liberati, S. (2020).
Phenomenological consequences of a geometry in the
cotangent bundle.
Phys. Rev., D101:064062.


	Introduction
	Kinematics in DSR
	Relative locality in flat spacetime
	Relative locality in curved spacetime
	Conclusions

	anm0: 
	0.9: 
	0.8: 
	0.7: 
	0.6: 
	0.5: 
	0.4: 
	0.3: 
	0.2: 
	0.1: 
	0.0: 


