Advanced radiation detectors and instrumentation for nuclear physics and applications

LA1: Desarrollo de instrumentación de vanguardia para futuros experimentos de Física de Partículas y Nuclear

JM Udías (GFN@IPARCOS for FNUC)

CAANDALUCÍA

1.1 sub-line: 500 k€, 1.2: 500 k€, 1.3: 250 k€, 1.4: 200 k€, 1.5: 156 k€

LA1: Desarrollo de instrumentación de vanguardia para futuros experimentos de Física de Partículas y Nuclear

Investigación e Innovación

Activity 1.1: Detector irradiation with accelerators IP: Javier García López. Univ. de Sevilla

Goal: Improvement and updating of the equipment of the 3 MV Tandem accelerators and National Accelerator Center cyclotron for radiation detector studies

Total Funds: 496.082€

Personnel: 160.065,60 € 1 Technician + 1 Predoc + 1 Postdoc (incorporated)

Equipment: 296.000€ + 40.016,40 € = 336.016,40 € (on-going bid)

- **Buncher** for pulsed beams of H, D and He: 94.000 €
- Charge Preamplifiers: 34.240 €
- 3 sets of **slits micrometrics**: ~ 184.000 €
- X-ray SDD high resolution detector: ~ 24.000 \in

Activity 1.2: Mass spectroscopy with accelerators

IP: José María López Gutiérrez.

• Goal: Upgrade of the injector system of the CNA Accelerator Mass Spectroscopy system Total funds: 496.082€

New injector magnet: 422.000 € => on-going Personnel: 74.082 €, researcher hired

• Activity 1.3: Exploitation of European Nuclear Physics Facilities

IPs: Joaquín Gómez Camacho and Carlos Guerrero

• Goals: Acquisition and development of equipment that allows consolidating and improving the participation of Andalusian researchers in nuclear physics experiments carried out at the n_TOF (CERN), ISOLDE (CERN) and LNS (INFN) facilities.

- Total Funds: 251.000€
 - Magnetron-sputtering chamber and target support: 128.000 € => ongoing
 - Linear stage + shieldings for ciclic activation station: 80.000€ => design phase
 - Personnel: 43.000 € => Done

magnetron-sputtering system

New injector for SARA

Cyclic activation system (FZK. Karlsruhe, Germany)

1.4 Protontherapy applications

IP M. C. Jiménez-Ramos (CNA)

Design and manufacture of a new beam pulsed system for the external line of the CNA cyclotron (US, CSIC, Junta de Andalucía) for radiobiology studies in FLASH regime

Cyclotron 18/9 MeV

Total funds: 196k€, personnel 96k€ (done), equipment 100 k€ (design phase) + IFIC & CERN Preliminary design of the beam deflector chamber

1.5 Phenomenology development in Hadronic and Nuclear Physics

IP José Rodríguez-Quintero (UHU)

Total funds: 156k€, all in personnel, done

Non-perturbative calculations of hadronic structure functions (PDAs, PDFs, GPDs, TDAs) to describe phenomenology in EIC (Electron Ion Collider), EicC (Electron Ion Collider in China) and JLab

CA VALENCIANA

ASFAE projects.

ASFAE/2022/027 (300 k€), **ASFAE/2022/031** (300 k€),

The ASFAE's research projects acknowledge the financial support from the MCIU with funding from the European Union NextGenerationEU and Generalitat Valenciana.

Transformación y Resiliencia

Total Energy Detectors for $(n,\gamma) \otimes n_{TOF}$

Fast decay component C₆D₆ stilbene-H stilbene-D Refraction index Hax emission Hax emission

ASFE goal: Develop the new generation of **high sensitivity TED** array detector for **(n,y)** measurements @ CERN-**n_TOF**, **STAR** (Stilbene-d12 deTector ARray) :

Development fund
ASFAE/2022/027 & MRR-CERN-IFIC

The ASFAE's research projects acknowledge the financial support from the MCIU with funding from the European Union NextGenerationEU and Generalitat Valenciana. • Worldwide Unique detection array made of solid Stilbene-d12 (very expensive material).

Improved s/b ratio (Small volume/Larger efficiency)

Better deposited energy resolution.

Density

- New detector reading systems (SiPM, Fast PMT..)
- PSD n/γ Stilbene/C6D6~x3

Advanced technology for challenging β decays

 $_{Z+1}A_{N-1}$ Accurate description of β decay requires primary information on:

- Decay half-life
- Involved masses (Q values)
- Beta decay probabilities (feedings)

ASFAE: study of **Advanced TAS geometries** and improvement of light readout of **LaBr₃** detectors

ASFAE: Development of **compact \DeltaE-E, low noisy \beta** detectors to be **combined** with **TAS detectors**

Developments fund ASFAE/2022/027

(α,n) reactions of nuclear astrophysics interest

MiniBELEN-10A: A modular detector for study of (α,n) reactions by direct neutron counting

- Provides a response almost independent of the neutron energy up to 8 MeV.
- Nominal detection efficiency: 7% (up to 8 MeV)
- Allows for measurements of (α, n) yields and reaction cross sections from thin and thick targets.

MiniBELEN is part of the **MANY** collaboration: **M**easurement of **A**lpha **N**eutron **Y**ields

 (α, n) reactions can populate excited levels!

ASFAE Goal: Replace a small fraction of the moderator by small LaCl₃(Ce) in order to tag n₀,n₁,n₂,...

GRIT detector for inverse kinematic reactions

GRIT (Granularity, Resolution, Identification, Transparency)

 4π LCP Silicon array for low energy nuclear physics

Objective

- Direct reactions of nuclear structure and/or nuclear astrophysics in inverse kinematics
- Designed to be coupled with gamma arrays like AGATA

Structure

- 16 trapezoidal telescopes: 8+8 front/rear
- 8 square telescopes in the ring at 90°
- 1 annular telescope at 0°
- Telescopes built with DSSD: good spatial (~1 mm) and energy resolution (<1% @ 5MeV)

128 channels/telescope => 3000+ channels to read out

ASFAE 2022/031 Objectives

- PLAS ASIC design completion
- Front-end distributor design
- Trigger interface design based on MicroATC
- Contribution to GRIT construction

VNIVERSITAT

E VALÈNCIA

Departament d'Enginyeria Electrònica

FscolaTècnicaSuperiord'Fnginyeria

Developments fund ASFAE/2022/031

The ASFAE's research projects acknowledge the financial support from the MCIU with funding from the European Union NextGenerationEU and Generalitat Valenciana.

CA CATALUÑA

Tecnologías avanzadas para la exploración del universo

Planes Complementarios en el área de Astrofísica y Física de Altas Energía Componente 17 del Plan de Recuperación, Transformación y Resiliencia

ANT – Advanced Nuclear Technologies Research Group

UPC – Universitat Politecnica de Catalunya AGAUR – Agencia de Gestió de d'Ajuts Universitaris i de Recerca, Generalitat de Catalunya Grup de Recerca Consolidat: 2021 SGR 00217

ENPAI – Experimental Nuclear Physics, Applications and Instrumentation

<u>https://ant.upc.edu/en/enpai</u> Contact: F. Calviño (<u>francisco.calvino@upc.edu</u>)

Financiado por la Unión Europea NextGenerationEU

Pla de Recuperació, Transformació i Resiliència

MANY Measurement of (Alpha,N) Yields

Goal: improve the nuclear data on (α ,xn) reactions

Design of a new <u>modular neutron moderated counter</u>, (mini-BELEN) with a <u>flat efficiency</u> up to 8 MeV. Commissioning with thick-target (alpha,n) yield measurements on ²⁷Al

Future plans: design and commissioning of a new **hybrid detector for neutron and gamma detection**

Nil Mont PhD thesis.

NIVERSITAT POLITÈCNICA

E CATALUNYA

CMAN

CNA

COMPLUTENSE

UNIVERSIDAD D SEVILLA

HENSA High Efficiency Neutron Spectrometry Array Goal: characterization of neutron flux

Underground labs: long-term characterization of n flux in Hall B of the LSC since March 2021. Setup upgraded in August 2022. Background characterization for ANAIS.

Current/future plans

Construction of a replica of the setup at LSC for a new collaboration at LNGS (Gran Sasso, Italy). Since late April 2024 the new HENSA is being used at LNGS. Future plans include also the development of new setups for a long-term monitoring of the neutron flux in multiple locations.

The HENSA concept has been used for Environmental Monitoring, Cosmic Ray Studies – Space Weather, and Underground Laboratories. NESTA - the Nested Neutron Spectrometry Array, is a portable version of HENSA Optimized for the **n_TOF facility at CERN**

Experimental Nuclear Physics, Applications and Instrumentation – ENPAI – ANT. UPC (<u>https://ant.upc.edu/en/enpai</u>)

Development of Electronics for Nuclear Instrumentation

Charge preamplifiers

- More than 20 units built.
- Patent pending.
- 6 preamplifiers for He-3 proportional counters at the Centro de Estudios Nucleares La Reina (Chile)

High voltage Power Suppliers

- Possibility of remote management.
- Used in various experiments and teaching laboratory

Under development

- Compact Multi-Channel Analyzer and digital pulse analysis systems.
- Light-weight neutron dosimeter prototype by event counting.
- Neutron dosimeter prototype by charge integration (Grant: Producte-24, AGAUR).

CA MADRID

TAU Project. Funded during second call. 150 k€ in Nuclear Activities of LA1.

"Tecnologías Avanzadas para la Exploración del Universo y sus Componentes" (PR47/21 TAU-CM-PRTR), with EU Resilient and NextGeneration funds.

Financiado por la Unión Europea NextGenerationEU

IP: Ignazio Scimemi (director of IPARCOS). Luis Mario Fraile (Nuclear Activities in LA1)

Total funds: 150 k€, 90 k€ for personnel (one electronic engineer, one electronics technician, supported until Dec 2024), 60 k€ equipment (20 Gs/s, 6 GHz bandwidth, 4 channels scope + other fast digitizers), already executed.

Goals: Develop compact <u>trigger detectors based on sipm+plastic</u>, and large inexpensive area detectors for LaBr₃(Ce) Scintillators, <u>optimize time-pickup for</u> <u>fast timing detector</u>, with <u>DL</u> algorithms. Pave the way for <u>smart fast timing</u> <u>detectors based on modern microcontrollers</u> (MCU). Explore <u>translation to</u> <u>PET electronics.</u>

1.1 <u>SiPM + plastic for trigger with fast timing capabilities</u> (IP L.M. Fraile)

Left: Example of a fast-timing setup at ISOLDE used for $\beta\gamma\gamma(t)$ spectroscopic measurements.

Right: Possible alternative configuration using beta-SiPM detectors

IPARCOS

Brand	Serie	Model	Size (mm²)	Pixel pitch (µm)	PDE (%)
Hamamatsu	S13360	3075CS	3x3	75	50
Hamamatsu	S13360	3075PE	3x3	75	50
Hamamatsu	S13360	6075CS	6x6	75	50
Hamamatsu	S13360	6075PE	6x6	75	50
Hamamatsu	S14160	3050HS	3x3	50	50
Hamamatsu	S14160	6050HS	6x6	50	50
Hamamatsu	S14160	6075HS	6x6	75	57
Onsemi	MicroFJ	30035-TSV	3x3	35	38
Onsemi	MicroFJ	60035-TSV	6x6	35	38
Broadcom	AFBR	S4N44C013	4x4	30	43
Broadcom	AFBR	S4N66C013	6x6	30	44
Ketek	WL	PM3347	3x3	47	47

Scintillator	Light yield (photons/keV)	Decay time (ns)	Size (mm ³)	
LYSO	29	42	3x3x5	
EJ-232Q	2,9	0,7	6x6x5	

IPARCOS

• Inorganic **Scintillator LYSO**: Na-22 source and three SiPMs+LYSO detectors in coincidences

• **Plastic EJ-232Q** with Eu-152 source in coincidence against PMT R9779 (HPK) with LaBr₃(Ce) 1x1".

1.2 <u>DL algorithms for timing, IP JL Herraiz</u>.

Three layer fully-connected architecture with 32 neurons per layer ending in a fourth output single-neuron layer using a MSE loss. Benchmark against conventional optimized CFD +TAC which yields **156 ps** (Co-60, CRT, FWHM)

1.3 Inexpensive electronics DAQ for timing and Smart detectors, IP JM Udías.

		ARM family of MCU		
FAMILY	STM32	NXP	NXP	Raspberry Foundation
MCU MODEL	STM32H747	i.MX RT1060	i.MX RT1170	RP2040
# cores	2: M7+M4	1	2:M7+M4	1
freq.	480 MHz / 240 MHz	600 MHz	800 MHz / 400 MHz	133 MHz
Board example	Portenta-lite	Teensy 4.1	several vendors	Raspberry Pico Pi
eth	100 Mbit	100 Mbit	Gbit	10 Mbit
flowtensor ready	YES	?	YES	?
Power (W)	2	0,4	0,5	0,2
Price per TIME+ENERGY channel at max rates (€)	75	50	60	20
Events per second to computer (8 bytes	1 Mcps	1Mcps	2,5 Mcps (3 MS/s ADCs)	100 kcps
			,	

IPARCOS

Widely available, very low jitter (<20ps) comparators designed for LIDAR (3 €), and high quality ADCs (real 12 bits, up to 10 MS/s, <3€ per channel) designed for automotive applications. Inexpensive MCUs (ST32, NXP, Raspberry Pi PICO), used in a <u>'from analog detector to ethernet'</u> DAQ. GI or GS for energy, TAC for time.

Take advantage of additional tensor cores in multi-core MCUs.

We demonstrated >1 Mcps per detector, **25 ps time jitter in the TAC, 4096 useable channels** in energy histograms. More tan 70 Mevents per second aggregated in a 40 cores PC, with our parallel, scalable software.

Summary

LA1 related to Nuclear Physics present in Four Autonomous Regions

Focus on international facilities (ISOLDE, nToF, others) with support and contribution of local facilities (CNA, CMAM)

Strong inter-region / inter-group collaboration

