

LIA5 DIRECT WIMP SEARCHES Centro de Astropartículas y **C**APA

Física de Altas Energías Universidad Zaragoza

Financiado por

la Unión Europea

F (A pito Ito Instituto Tecnológico de Aragón Instituto de Física de Cantabria

María Martínez CAPA (U. Zaragoza) maria.martinez@unizar.es (special thanks to T. Dafni & R. Vilar for providing material)

Paraninfo U. Zaragoza, June 6 2024

Outline

- Overview of direct WIMP searches
- LIA5 WIMP experiments:
 - ANAIS-112 & ANAIS+

Centro de Astropartículas y Física de Altas Energías Universidad Zaragoza

• TREX-DM

Centro de Astropartículas y Física de Altas Energías **Universidad** Zaragoza

• DAMIC

DM Direct detection

Dark Matter Candidates: WIMPs

Dark Matter Candidates: WIMPs

standard WIMP scenarios ($m_W = 10 - 10^3$ GeV) : Look for NR, preferred targets with high A

6

standard WIMP scenarios ($m_W = 10 - 10^3$ GeV) : Look for NR, preferred targets with high A

standard WIMP scenarios ($m_W = 1 - 10$ GeV) : Look for NR, very low energy threshold!

standard WIMP scenarios ($\mathbf{m}_W = \mathbf{10} - \mathbf{10}^3 \text{ GeV}$) : Look for NR, preferred targets with high A

standard WIMP scenarios ($\mathbf{m}_W = \mathbf{1} - \mathbf{10}$ GeV) : Look for NR, very low energy threshold!

dark sector couplings ($m_W = 1 - 1000 \text{ MeV}$) : Inelastic scattering off bound electrons

standard WIMP scenarios ($\mathbf{m}_W = \mathbf{10} - \mathbf{10}^3 \text{ GeV}$) : Look for NR, preferred targets with high A standard WIMP scenarios ($\mathbf{m}_W = \mathbf{1} - \mathbf{10} \text{ GeV}$) : Look for NR, very low energy threshold! dark sector couplings ($\mathbf{m}_W = \mathbf{1} - \mathbf{1000} \text{ MeV}$) : Inelastic scattering off bound electrons dark sector & ALPS ($\mathbf{m}_W = \mathbf{1} - \mathbf{10}^6 \text{ eV}$) : DM absorption

9

Backgrounds

	α,β,γ	material selection, shielding, particle discrimination techniques	
γ, β Light	$n N \rightarrow n N$	most critical for NR (mimic WIMP signal). Shielding, active rejection (multiplicity)	eter punou 10 ⁻⁴ LUX p-p solar v Borexino P-p solar v
	$\nu e^- \rightarrow \nu e^-$	ultimate background for ER recoils	LUX-ZEPLIN (Xe 5.6 Tonne Fid.)
	$\nu N \rightarrow \nu N$ (CE ν Ns)	ultimate background for NR search (neutrino fog)	10^{-7} 10^{0} 10^{1} 10^{2} 10^{3} 10^{4} Energy [keV _{ac}]

 8 B, DSNB and atmospheric neutrinos produce nuclear recoils via CE ν Ns that cannot be distinguished from WIMP signals!

the sensitivity of the experiments does not evolve as in a bkg free experiment, but much slower \rightarrow lower limit in achievable cross-section (neutrino fog)

Ar ×1/100

10

XENON10

1.1

Ь

Distinctive signatures

Distinctive signatures

Present status

Scope of the LIA5 direct detection experiments

Scope of the LIA5 direct detection experiments

Scope of the LIA5 direct detection experiments

CAPA Ce Fís Ui

-

Centro de Astropartículas y Física de Altas Energías **Universidad** Zaragoza

ANAIS-112 & ANAIS+

Testing the DAMA/LIBRA signal

2-6 keV

5000

2-6 keV

6000

7000

DAMA/NaI+DAMA/LIBRA-phase1+DAMA/LIBRA-phase2 (2.86 ton \times yr)

3000

4000

Residuals (cpd/kg/keV)

0.08

0.04

-0.06 -0.08

-0.

1000

2000

0 -0.02 -0.04 DAMA clearly sees an annual modulation at 12.9 σ but **the parameter's region singled out by DAMA/LIBRA is excluded by many DM experiments**

But this comparison is model dependent TO AVOID ANY MODEL DEPENDENCE, AN INDEPENDENT CONFIRMATION WITH THE SAME TARGET , NaI(TI), IS REQUIRED

 $Acos[\omega(t-t_0)]$

8000

9000

Time (day)

ANAIS-112

https://gifna.unizar.es/anais/

LSC ANA

Annual Modulation with Nal Scintillators

Improving ANAIS sensitivity

ANAIS-112 3-years annual modulation with ML

best fit modulation amplitudes compatible with zero at ~1 σ Best fit incompatible with DAMA/LIBRA at 3.9 (2.8) σ for [1-6] ([2-6]) keV Sensitivity with 3 years data: 2.8 σ for [1-6] & [2-6] keV >4 σ expected this summer (6y unblinding) 5 σ sensitivity at reach in late 2025

ANAIS+

Centro de Astropartículas y Física de Altas Energías Universidad Zaragoza

Ciernate Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas

I. Coarasa talk

Goal: Lower the energy threshold Eth <0.5 keV.

Replace PMTs for SiPM at low T (~100 K) ADVANTAGES

- High QE.
- High radiopurity.
- Low operating voltage.
- No Cherenkov emission.
- Reduction of spurious light emission

MAIN DRAWBACK: High dark

current rate -> Overcome by working at low T BONUS: Nal pure is a very good scintillator at 100 K

First ANAIS+ prototype CAPA

Centro de Astropartículas y Física de Altas Energías Universidad Zaragoza

Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas

- SiPMs designed and produced at LNGS (4 sides x 6 SiPM /side)
- Structure & PMMA pieces designed & constructed at CAPA
- Testing of the prototype (no Nal) at LNGS (beginning of July).
- Prototype integration and testing@ CAPA cryolab in fall 2024
- Next step: test in LAr at LSC

Centro de Astropartículas y Física de Altas Energías Universidad Zaragoza

TREX-DM

Instituto Tecnológico de Aragón

TREX-DM (TPC for Rare Event eXperiments-Dark Matter)

- A Micromegas TPC for light-WIMPs at the LSC
- ~20 l of pressurized gas (~0.16 kg Ne at 10 b)
- microbulk Micromegas and AGET-based electronics.
- Goals: low energy threshold (< 1 keV) and low background level (~1 (keV kg day)⁻¹).
- NOT focused in directionality \rightarrow operation at high P

H=0.5 m, D=0.5 m, Central cathode

Why a gas TPC with a Micromegas readout

North Entries 200596 • Gas TPCs, combined with highly segmented readout planes offer: Target selection flexibility 15% FWHM Low energy threshold 20000 @22keV Access to rich topological information The microbulk Micromegas of TREX-DM Biggest microbulk surface built ٠ Micromegas reado Radioactivity Control in process ٠ active Energy resolution ٠ area Segmentation 512 channels: • 256 X strips, 256 Y strips 25 cm Scaling up if needed At LSC, with a shielding consisting of 5 cm copper + 20 cm lead + Rn-free air (neutron shielding foreseen 200 250 150 X-direction (mm) Building TREX-DM with the new mM:

TREX-DM sensitivity prospects

- Background levels
 - ²¹⁰Pb Surface contaminations → AlphaCAMM
- Energy threshold
 - Preamplification stage → GEM-MM, ³⁷Ar calibration
- Gas composition improvement
 - Increasing iC4H10 concentration, varying gases

		$E_{th} (eV_{ee})$	B(dru)	Gas	
Exposure 0.32 kg y D B V D	Ζ	1000	100	Ar-1%Iso	
	А	50	100	Ar-1%Iso	
	В	50	1	Ar-1%Iso	
	\mathbf{C}	50	1	Ar-10%Iso	
	D	50	0.1	Ne-10%Iso	
			Exposure 1.6 kg y		

AlphaCAMM (Alpha CAMera Micromegas)

 'Spin-off' of TREX-DM: gaseous chamber with a segmented mM (25cm x 25cm) to measure ²¹⁰Pb surface contamination of flat samples down to 100 nBq/cm²

K. Altenmuller et al, 2022 JINST 17 P08035

Topological information to reconstruct origin and end of a tracks from ²¹⁰Po

After proof-of-concept with a non-radiopure prototype, a radiopure detector is being commissioned

Lower threshold: GEM-MM

• Energy threshold

- preamplification volume with a GEM on top of a mM
 factors would allow very low energy threshold (even single electron)
 - Big microbulk mM @1bar (x100)
 - Small microbulk mM @1-10bar (x100 to x10)

publication in preparation

Low energy, volume calibrations

Gas source: distribution in all volume, homogeneous calibration of the readout plane.

• ³⁷Ar: 2.8 keV (90%), 0.27keV (9%)

Irradiated CaO powder at CNA in Sevilla

• 83mKr: 30keV, 7.6keV, 2.1 keV, 1,8 keV

Plan de Recuperación,

Transformación v Resiliencia

DAMIC

CCDs as DM detectors

- Photon detectors → Charge-coupled devices have been used for a long time as telescope cameras
- e-h pairs produce (\sim 3.77 eV required) \rightarrow Charge is collected near the surface
- Precise spatial resolution and good energy resolution \rightarrow using the diffusion 3D reconstruction
- Conventional CCDs limited to noise of ~2e- → single e resolution to ionization signals, 2-3 e threshold (~ 5-10 eV)

pixel

Z

• Achieved very low dark current rates (2x10-4 e-/pixel/day, PRL 123, 181802 (2019))

CCDs as DM detectors

- Scalable technologies to increase the number of interactions in the target.
- Low and controlled backgrounds
- Exquisite spatial resolution!
 - spatially correlated, time separated energy clusters
 - Measurement (and rejection) of surface and bulk backgrounds
 → decay chains detected
- Low threshold to access smaller WIMP masses:
 - < 6 GeV (nuclear recoil, NR)
 - \sim eV-MeV (electron recoil/absorption, ER)
- Skipper-CCDs allows single electron resolution

DAMIC-M design and background

CCDs

CCD spacer

(EFCu)

- o 208 CCDs, 6k x 1.5k pixels (15 x 15 x 675 μ m³), high resistivity (>10kΩcm) n-type, high purity silicon, $47/6 \ 47/6 \ \mu m^2$ skipper amplifiers
- 4 CCDs glued on a silicon pitch adapter.
- Flex cable glued on the Si pitch adapter \rightarrow the voltage biases and clocks

Detector

- Total mass of aprox 0.7 Kg of Si, operate at ~120K and ~1e⁻⁷ mbar
- Electronics chain newly designed, prototyped and integrated with CCDs
 - \rightarrow excellent noise performance. Resolution (readout noise) \sim 0.1 eV
- Energy threshold of 2 electrons (\sim 10 eV)
- Very low background \rightarrow Dedicated R&D with QFlex
- Electro-formed copper cryostat, IR shield
- Layered polyethylene + lead shielding, innermost layer of ancient lead

Background controls

- Limiting the cosmogenic activation of silicon and copper is crucial
 - Silicon: exposure to CR < 2 months to achieve background goal. (So far 2 weeks)
- Copper: e.f. copper produced and machined underground (MAJORANA copper at SURF, and Canfranc).
- CCD treatment to properly clean the surfaces

R. Vilar talk 33

DAMIC-M: Physics reach

dark sector dark matter

Dark Sectors

WIMP-nucleus elastic scattering (can also detect secondary electron recoils from inelastic Migdal effect)

34

DAMIC-M Status

DAMIC-M on-line by 2025!

Calibrations : Different radioactive sources

- o ²⁴¹Am → Calibration of the low-energy Compton background (PRL 106 (2022) 092001)
- ²⁴¹Am ⁹Be → Distinguishing nuclear recoils signals from electronic recoil backgrounds (arXiv:2309.07869)
- ¹²⁴Sb/⁹BeO-¹²⁴Sb/Al → Ionisation efficiency of nuclear recoils (Phys. Rev. D 94, 082007 (2016))

${\tt Accomplishments}$

- produced, stored wafers for CCDs with low cosmogenic exposure
- developed low background packaging procedures
- analysis/simulation frameworks ready and continuous efforts for improvements
- installed Low Background Chamber (LBC), first dark matter-electron results and modulation analysis

In Progress

- performing nuclear ionization efficiency measurements
- fabrication, assays of low-background parts
- preparations for on-site work, including CCD packaging, testing, assembly

CCDs future: OSCURA

OSCURA: SENSEI + DAMIC-M

Experiment	Mass(kg)	#CCDs	Radiation bckg [dru]	Instrument bkgd [e-/pix/day]	Commissioninig
SENSEI @MINOS	~0.002	1	3400	1.6x10 ⁻⁴	Late-2019
DAMIC @SNOLAB	~0.02	2 (6k x 4k)	10	3 10 ⁻³	Late-2021
LBC (DAMIC-M)	~0.02	2 (6k x 4k) (8 6k x 1.5k)	~10	3 10 ⁻³	Early-2022
SENSEI-100	~0.1	50	~10 (goal)		Mid-2022
DAMIC-M	~0.7	208	~0.1 (goal)		Late-2024
Oscura	~10	20000	~0.01 (goal)	1.10 ⁻⁶ (goal)	~2028

OSCURA challenges: to increase mass (from 10s to 10,000s CCDs) and to reduce the backgrounds (3 orders of magnitude) \rightarrow Major R&D

Oscura early science (arXiv:2304.08625)

 $\sigma_n \, [\mathrm{cm}^2]$

Summary

- Good progress in LIA5 experiments thanks to "planes complementarios"
- LIA5 WIMP experiments are well positioned in the international context to provide relevant insights into the WIMP search:
 - ANAIS-112 3y data strongly challenges the DAMA/LIBRA annual modulation. Rejection with >4 σ at reach this summer and >5 σ in late 2025
 - ANAIS+ (1 kg NaI+SiPM @ 100 K) can improve current SD-proton sensitivity for low-mass WIMPs and discard QF differences as explanation for DAMA/LIBRA signal
 - TREX-DM (Ar/Ne TPC, \sim 20 l pressurized gas) can lead the sensitivity for mW between 0.1-1 GeV for SI coupling
 - DAMIC-M (Si CCD, 1kg) can lead SI sensitivity for mW~few GeV and substantially improve the sensitivity for electron coupling in several orders of magnitude

XENON1

 $m_{A'}$ (eV)

