

Financiado por la Unión Europea NextGenerationEU

Noble Detectors for Neutrino Physics

Michel Sorel

Many thanks to: Carlos Benitez, Anselmo Cervera, Raul Esteve, Thorsten Lux, Justo Martin-Albo, Patricia Sanchez, Nadia Yahlali

AstroHEP-PPCC24, Zaragoza (Spain), June 2024

PPCC projects covered in this talk

Title	PI (Institution)	Experiment	Amount (kEUR)	Autonomous Community
Instrumentación para experimentos con neutrinos de aceleradores	A. Bueno (UGR)	DUNE	363	Andalucía
Instrumentación para laboratorio de criogenia dedicado a estudios de las propiedades de los neutrinos	P. Sanchez (UGR)	DUNE	363	Andalucía
Desarrollo de nuevos sensores para futuros detectores criogénicos de neutrinos	D. Garcia (UGR)	DUNE	363	Andalucía
The T2K ND280 upgrade	T. Lux (IFAE)	T2K, Hyper-K	130	Catalunya
Electrónica de front-end para fotosensores en el detector NEXT-HD	J. Ballester, R. Esteve (UPV)	NEXT	205	Com. Valenciana
Creation of a multipurpose laboratory at IFIC for the development of cryogenically-cooled gas and liquid noble element detectors	A. Cervera, N. Lopez (IFIC)	DUNE, NEXT	299	Com. Valenciana
Development of state-of-the-art light detection systems for the DUNE and NEXT experiments	N. Yahlali, J. Martin-Albo (IFIC)	DUNE, NEXT	299	Com. Valenciana

Common theme: argon/xenon Time Projection Chambers (TPCs)

- Charged particles deposit energy in Ar/Xe via ionisation and scintillation
- Ionisation electrons collected by establishing drift field
- **TPC**: full 3D imaging from 2D image on readout planes .vs. electron drift time
- · Primary scint. light detection: timing
- Trigger and calorimetry both with ionisation and scintillation
- Advantages: imaging, calorimetry, particle identification, large active mass
- **Disadvantages**: high Ar/Xe purity, very high voltages, cryogenics for LAr

Noble elements

- All noble elements: strong ionisation and scintillation yields.
- Ar: cheapest \rightarrow best for kton-scale detectors.
- Xe: dense, high-Z and with 9% isotopic abundance of a $\beta\beta$ emitter (¹³⁶Xe).

Element	He	Ne	Ar	Kr	Xe
Boiling point at 1 atm [K]	4	27	87	120	165
Density in liquid [g/cm3]	0.12	1.2	1.4	2.4	3.0
Ionisation yield [10 ⁴ e/MeV]	3.9	4.6	4.2	4.9	6.4
Scintillation yield [10 ⁴ γ /MeV]	1.5	0.7	4.0	2.5	4.6
Scintillation wavelength [nm]	80	78	128	150	175
ββ isotope	-	-	-	-	¹³⁶ Xe
Cost [USD/kg]* * https://en.wikipedia.org/wiki/Prices_of_chemical_elements	24	240	0.93	290	1800

4

Neutrino oscillations with DUNE and Hyper-K

Different strategies, different detectors

DUNE

- Very long baseline \rightarrow large matter effect
- Broadband neutrino beam
- Reconstruct neutrino energy over broad range → LArTPC-based far detector
- Highly-capable near detector (incl. Ar TPC) to constrain systematic uncertainties

Hyper-K

- Shorter baseline \rightarrow small matter effect
- Narrowband neutrino beam
- Lower neutrino energies → very large water Cherenkov far detector
- Highly-capable near detector (incl. Ar TPC) to constrain systematic uncertainties

Upgraded ND280 near detector for T2K-II and Hyper-K IFAE project \rightarrow more on T2K ND280 upgrade in T. Lux's talk this afternoon

- ND280 upgrade project (started 2016): design, assembly and installation of three new subdetectors
- Will be used for T2K-II phase and afterwards for Hyper-K
- Spanish contributions:
 - Mainly 2 new (high-angle) TPCs: GAr-TPCs at atmospheric pressure
 - Co-project leader: T. Lux (IFAE)

Upgraded ND280 near detector for T2K-II and Hyper-K IFAE project \rightarrow more on T2K ND280 upgrade in T. Lux's talk this afternoon

Installation completed in May 2024, and first neutrino events recorded!

Photon Detector Systems for DUNE Far Detectors

- FD1: PDS in anode planes
- FD2: PDS on cathode and cryostat membrane walls
- Validation in ProtoDUNE detectors at CERN Neutrino Platform since 2018

Neutrino physics with cryogenic detectors

Three UGR projects connected with DUNE

Project 1: Instrumentation for accelerator-based neutrino experiments

 DUNE Phase-I and Phase-II Far
 Detector
 construction (eg, flanges, evaporator)

Project 2:

Instrumentation for cryogenics laboratory dedicated to the study of neutrino properties

 Setup to study xenon-doped LAr and LAr operating conditions

Project 3:

Development of new sensors for future cryogenic neutrino detectors

 New sensors based on amorphous selenium technology

transparent electrode

opaque electrode

θO

amorphous selenium

Neutrino physics with cryogenic detectors Three UGR projects connected with DUNE

Status:

٠

- Concession Agreement with the Junta de Andalucía at the end of December 2023
- The three projects are in an initial phase
- Adjusting objectives to the new execution time of the grants

R&D on light detection systems for DUNE IFIC project ASFAE/2022/029

- Objectives:
 - 1. Design optimization of DUNE's X-ARAPUCA photon collectors

 PCE measurements with monochromator and a cryostat with MgF₂ windows.

R&D on light detection systems for DUNE IFIC project ASFAE/2022/029

- · Objectives:
 - 1. Design optimization of DUNE's X-ARAPUCA photon collectors
 - 2. Reflectance measurements (specular and diffuse) of detector materials to understand total light yields in DUNE far detector

e SiPM characterization in cryogenic conditions (MASSIBO)

Precision LAr temperature monitoring systems for DUNE IFIC project ASFAE/2022/028

• IFIC leads cryogenics instrumentation for DUNE far detectors and is in charge of their Temperature Monitoring System (TMS)

RTD-based TMS

- **RTD**: Resistance Temperature Detector.
- >100 RTDs installed in CERN prototypes, achieving 2 mK resolution.
- >1000 RTDs to be installed in DUNE far detectors.

Vertical array of 48 sensors in ProtoDUNE

FBG-based TMS

- **FBG**: Fiber-Bragg Grating.
- RTDs cannot operate in high $E \rightarrow FBGs$.
- R&D to increase fiber sensitivity and improve calibration.

High-pressure xenon gas TPCs for $0\nu\beta\beta$ in ¹³⁶Xe NEXT experiment

Topological event identification distinguishes 2e (signal-like) from 1e (background-like) events

Precise energy resolution of <1% FWHM

Scalability to large masses of isotopically-enriched ¹³⁶Xe

Possibility to detect ¹³⁶Ba⁺⁺ daughter ion in coincidence with decay electrons

NEXT experimental program

NEXT-100 status

Detector installed and under commissioning at the LSC!

Towards NEXT-HD: photon detector system R&D IFIC projects ASFAE/2022/028 and ASFAE/2022/029

- Photon detection system will replace PMTs (a leading background source) with a new system.
- **Baseline concept**: symmetric TPC with dense SiPM arrays at the anodes (tracking and calorimetry) and a barrel photon detector made of scintillating optical fibers (calorimetry). $PDE(\lambda) = \frac{(I_{fibers}(\lambda) - D) \cdot Q_b(\lambda)}{I_{2}(\lambda) - D} \cdot e_{fibers}$

•

• **IFIC**: detailed characterization of the photon detection efficiency of the new barrel photon detectors. Q_b

 $\epsilon_{\rm fibers}$

Towards NEXT-HD: front-end electronics for photo-sensors UPV project ASFAE/2022/012

- **Objective 1:** DAQ concentration inside the vessel for a dense tracking plane.
 - Development of solutions, at the power and thermal management levels.
 - Development of solutions for the concentration of data from several ASICs in a small number of fiber optic links.
 - **Objective 2:** Develop front-end electronics for an energy measurement based on a fiber barrel detector (FBD).

•

• **Objective 3:** The above objectives must be compatible with the low level of radioactivity necessary in low background experiments such as NEXT.

Towards NEXT-HD: front-end electronics for photo-sensors UPV project ASFAE/2022/012

• Concept of modular electronics for objectives 1 and 2:

Summary

- LIA6 on Neutrino Physics includes advanced instrumentation for:
 - Neutrino telescopes (**KM3NeT**, F. Salesa's talk)
 - Accelerator-based neutrino oscillation experiments (T2K-II, Hyper-K and DUNE, this talk)
 - Neutrinoless double beta decay experiments (NEXT, this talk)
- Three autonomous communities involved: Andalucía, Catalunya and Comunidad Valenciana
- Important fraction of the PPCC funds targeted to improve our in-house laboratories, to deliver on current experimental commitments and to prepare for the future

Backups

T2K and the ND280 role

DUNE will be built in two phases

• Beam: 1.2 MW beam line (PIP-II)

• **Beam:** > 2 MW beam line (ACE Upgrades)

23

Optics laboratory at IFIC Projects ASFAE/2022/028 and ASFAE/2022/029

• Optics laboratory at IFIC is being expanded with ASFAE funding.

