

Readout ASICs for single photon detectors

David Gascón Fora On behalf of many colleagues

ICCUB: Photo-sensor readout in different fields

LHCb at CERN

Telescope cameras

Single-Photon Sensors

Axion and Dark Matter searches

Monte Carlo simulations

LISA

Space missions

Microelectronics (Chip Design)

Electronics

4	1	1	V	

e Products SCIENTIFICA X +							- a	×
·				\$ Q O	9 = 0		🛛 🖌 G	
🕻 Apécaciones 🎇 Rocket Japanese L 🧧 Basics 🧧 Projectes 📕 Tots 📍 Audios	s de Historia 🚷 Accés recursos-e C	🧧 Coses 🚦 Universitat de B	arc 🚦 Universitat d	e Barc 🚦 Cor	reu - david.gasc		Ctros marc	adore
SCIENTIFICA		Products References	Applications	Technologies	Company	Talent	Contact	
Products								
This is Scientifica's product or	atalog for different							
applications in the Scientific F	acilities market:							
A THE AND A DECK OF A COM		10						
			•					
				2.2				
	ENIOA							
	15		0	•				
)- aminunium.		Hitter in cases o	-					
eMUSIC, Multichannel SiPM readout	eMUSIC Evaluation Boa	ard eM	USIC MiniBoard	e e e e e e e e e e e e e e e e e e e				
ASIC	Read More	Rea	d More →					
Read More								

Technology Transfer

https://icc.ub.edu/research/technology-unit

LHCb upgrade Upgrade II: PicoCal (LIA1)

- HL-LHC: Photodetectors and FE electronics
 - Involved in Calorimeter FE electronics since 1999
 - Responsible of current calorimeter front-end (ICECAL)
 - R&D for HL-LHC: Calorimeter, RICH and Scintillating Fiber Tracker

Precise Timing is critical for HL-LHC

PicoCal Project: LS4 upgrade of LHCb calorimeter SPACAL W-Polystyrene: 10 ps @ 100 GeV No significant degradation after 12 m cables

PicoCal

LHCb upgrade Upgrade II: PicoCal (LIA1)

- ICECAL65 chip being designed for PicoCal (ICCUB, UPC, IFIC)
 - Time-interleaved double channel scheme for integrator recovery
 - 2 gains to cover the large dynamic range

- GBVV > 500 IVII
- ➢ PM > 65⁰
- > SR > 0.5 V/ns
- VCM ~0.6V
 - Power optimization

Cherenkov Telescope Array (LIA2)

- ICCUB has developed 3 different chips with important contributions to the cameras
 - More than 100,000 chips produced to equip 15 cameras
 - Robotic system for quality control
- In LIA2 we are contributing to the advanced SiPM camera for the Large Sized Telescope
 - Preamplifier Readout Electronics for Summing SiPMs Enhanced Circuit (PRESSEC) ASIC
 - Collaboration: ICCUB, UPC and University of Geneva
 - Submission in Q1 2025
 - Energy measurement and NSB Slow Integration

UPC

HERD: BETA ASIC (LIA2)

See J.Rico plenary talk

- Channels: 16 (PSD) or 64 (FIT)
- ✓ Event rate : 10 kHz max
- ✓ Configurable preamplifer gain: 4 bits
- ✓ Tunable shaping time: 300 ns to 1.5 us
- Trigger output: < 250 ps time resolution

- ✓ Single photon resolution: SNR >10
- Dual path: automatic gain switching
- On chip ADC: Wilkinson11 bit + 1bit (path sel)
- Dynamic Range : 15 bit
- Slow Digital Control : I2C
- Power Budget : <1 mW/ch</p>

Institute of Cosmos Sciences

6

16 ch - 130 nm CMOS – 9 mm²

Sanmukh, A.. et al. Low-power SiPM readout BETA ASIC fo applications. NUCL SCI TECH 35, 59 (2024). https://doi.org/10.1007/s41365-024-01419-z

Institut d'Estudis Espacials de Catalunya

Other space instruments based on BETA ASIC

- A radiation monitor based on BETA-ASIC is being developed for LISA mission
 - IEEC project (LIA3)

• Other missions and CubeSat projects are considering BETA chip

APT/ADAPT, GENEO-02 et alt

See M. Nofrarias plenary talk

R&D: Towards a new vertically integrated sensor

- FastIC collaboration: ICCUB (Univ. Barcelona) and CERN microelectronics section
 - https://ep-news.web.cern.ch/content/fastic-and-fasticpix-developments
 - FastIC chip family: FastIC, FastIC+ and FastRICH
 - ATTRACT project to explore new sensor architecture

DEVELOPING BREAKTHROUGH TECHNOLOGIES FOR SCIENCE AND SOCIETY

CATTRACT

J. Mauricio, R. Manera S. Gomez, A. Sanuy, D. Gascon et alt @ ICCUB J. M. Fernandez-Tenllado, M. Campbell, R. Ballabriga et alt. @ CERN

FastICPix: Integrated Signal Processing for a New Generation of Active Hybrid Single Photon Sensors with Picosecond Time Resolution

The Idea is to combine actively the signal of small micropixel sub-arrays based on the fastest single photon sensor technologies with ultrafast readout electronics using 3D integration.

Linked to DRD4 and DRD7

- Applications:
 - Fundamental science
 - Medical Imaging
 - Quantum communications
 - ToF detectors

R&D: Our approach to solid state single photon sensor

FastIC architecture

• FASTIC current mode 8ch ASIC.

- Multiporpose: particle physics, medical imaging, ToF detectors
- Compatible with SiPMs, PMTs, MCPs
- Designed to cope with capacitance from few pF to nF
- Large dynamic range: single photon to 1000s

Input stage "amplifier" < 3 mW/ch

Fast current mode

input stage

Current mode

Collaboration of the ICCUB (Univ. Barcelona) and CERN-MIC

Based on HRFlexToT ASIC

FastIC performance

- **Sensor:** FBK-NUVHDLFv2b 3x3 mm², 40 pixel pitch.
- Crystal: LSO:Ce Ca 0.2% of 2x2x3 mm³.

Input "amplifier" < 3 mW/ch Complete signal processing < 12 mW/ch SPTR with FBK-NUVHDLFv2b 3x3 mm² 800 700 SPTR sigma = 64.39 ps FWHM G = 151.62 ps150 ps FWHM 600 mu G = 21.694 sj 500 400 300 SPTR sigma = 59.39 psFWHM \breve{G} +E = 151.16 ps mu G+E = 21.668 200 100 20.0 20.5 21.5 22.0 22.5 23.0 21.0

Delay (ns)

• Linearity error is below 3%

FastIC+ status

• A 25 ps time bin TDC is added to FastIC

• Back from foundry few weeks ago

- Dimension: 3x3 mm²
- Technology: TSMC 65 LP
- Metal stack: 9M + AP
- Quantity: 10 units (QFN64)
 - \circ For internal use only
 - Standard package will be QFN88
- Very preliminary measurements!!!
 - THE CHIP IS MEASURED IN A SOCKET (INDUCTANCES)

FastIC+ status

• FastIC+ is alive and kicking 🙂

- QFN88 packaging has been already asked
- Quite promising TDC performance:
 - Jitter < 12 ps
 - DNL < 6 ps</p>
 - INL < ± 22 ps</p>
 - TDC Power Consum.: 24.6 mW
 - \circ ~3 mW/ch

No big issues have been identified for the moment

- Very preliminary:
 - The chip has been tested in a socket in a suboptimal (compatible) package.
 - Not tested in an optical setup yet.
 - No fine parameter tuning to obtain the best timing resolution.

TDC Trigger Channel DNL & INL Error (TDC Code Density Test)

Spin-back from R&D: FastRICH (LIA1)

- FastIC is used in LHCb RICH upgrade test beams
 - Readout and DAQ electronics developed by LHCb RICH groups

See: F. Keizer, "A novel fast-timing readout chain for LHCb RICH LS3 and prototype beam tests", NIMA, Vol. 1055, 2023, https://doi.org/10.1016/j.nima.2023.168475.

More information on: https://fastrich.docs.cern.ch/

- FastRICH: a dedicated 16 ch ASIC for RICH upgrade in LS3
 - Optimized for single photon detection
 - Compatible with PMTs and SiPMs
 - CFD to deal with time walk @ high rates
 - Nearly the same PLL and TDC blocks integrated in FastIC+
 - Technology: TSMC 65 LP
 - Schedule: submission during 2024

Tech Transfer: Towards a new ToF-PET scanner concept

- The PETVision Project was approved! Call: Horizon EIC 2022 Pathfinder-open.
 - 5-year project started in September 2023
- The aim of PetVision is to leverage on vertical integration techniques to build a modular ToF-PET scanner, with next-generation performance and affordable cost.

Simulation of the capability of the proposed planar TOF PET imager: Reconstructed Image (3mm slices) of an XCAT digital phantom acquired by two 120x60cm² panel detectors (above and below the patient) assuming 100 ps TOF resolution and 10 mm scintillator thickness (A) and with small 4 panel system used to image head (B) and torso (C)

New vertical integration facilities

- Different facilities for electrical and optical characterization
 - Picosecond laser, micro-positioning systems, GS/s acquisition, thermal chamber, etc
- New infrastructures for vertical integration: sensor and integrated readout

Under preparation

- $\circ~$ Microprobe automatic station
- $\circ~$ Flip-chip and bump bonding
- Clean room for integration and test

Summary

- Try to define a coherent technology development plan with impact in different areas (LIAs 1,2 and 3 for the moment)
- Contributions to experiments, missions and upgrades
- Seed activities for ECFA's DRD program
 - Involved in DRD4, DRD6 an DRD7

 $\odot\,$ Leading Fast Timing and Readout Electronics Task in DRD4.1 $\,$

- Technology Transfer of our technology
 - Impact on medical imaging
 - New activity on quantum communications

Thanks a lot for your attention !!!

http://icc.ub.edu/technology

Thanks a lot for materials and contributions to our colleagues !!

Generalitat de Catalunya Departament de Recerca i Universitats

dgascon@fqa.ub.edu

FastIC support and evaluation boards

Documentation, software and support available at

- <u>https://icc-ub.gitlab.io/instrumentation/documentation/index.html?page=fastic</u>
- Contact: fastic_support@fqa.ub.edu

Quantum Communications Group

Team

Bruno Julia Díaz - Dept. Quantum Physics and Astrophysics and ICCUB José María Gómez Cama - Dept. of Biomedical Engineering and ICCUB Martí Duocastella - Dept. of Applied Physics Raul Lahoz Sanz - PhD student Lidia Lozano Martín - PhD student Adrià Brú i Cortés - Undergrad Physics and Electronics engineering

Plan de Recuperación, Transformación y Resiliencia

Generalitat de Catalunya Departament de Recerca i Universitats

WP1) Enhanced production of single and entangled photon from quantum dots WP2) Characterization of their entanglement properties by means of a versatile Bell test.

Current funding from Planes Complementarios de Comunicaciones Cuánticas (until Sep 2025)

GOBIERNO DE ESPAÑA V Resiliencia

Generalitat de Catalunya Departament de Recerca

https://quantumcomms.fqa.ub.edu/

VI. Quantum technologies

Photon antibunching experiment

Bell test for entangled photons

QCommsUB

VII. Technology transfer

- Technology protected by patent and commercialized
 - Licensed to Scientifica international
 - Chip and evaluation boards are commercially available
 - Part of wider collaboration agreement

Software/Computing + Instrumentation: Virgo

- ICCUB is full member of Virgo since July 2019
 - Now 11 members, will add 3 this year. Contributions on: Computing, Instrumentation, Data analysis, Science, Outreach
- Computing:
 - Quite in stand-by (our expert left, now waiting for new manpower to arrive: COVID + India...)
 - So far: Computing Model revision, migration to modern software tools (CMake + Conda, Git)
 - Soon: Low-latency end-to-end test facility and off-site porting, support to pipelines development, data handling improvements...
- Instrumentation:
 - Quantum Noise Reduction:
 2D Position Sensitive Devices + electronics + mechanics + test (to be operated in vacuum → outgassing tests)
- Data analysis:
 - rROF-based de-noising algorithm integrated in the Bursts (cWB) pipeline

(see GW presentation by R. Emparan/M. Gieles)

II. Activities in instrumentation

Part of the *ICCUB technology unit* (*TU* has 2 sections: instrumentation/electronics and software/data processing) Enabling key contributions on instrumentation to ICCUB to *high impact collaborations*:

- Particle physics: LHCb, IAXO
- Ground instruments: CTA, VIRGO
- Space missions: LISA (ESA-L3), HERD

Close coordination other ICCUB research groups and Electronics Department (Solar Orbiter, Ariel and others) *Technological R&D*: photosensors, medical imaging and quantum technologies

LHCb detector at LHC (CERN) with the Experimental Particle Phsyics group

Cherenkov Telescope Array with the High Energy Astrophysics group 181214 Run01 Event# 1

VIRGO gravitational wave detector involves many groups and the 2 sections of the TU

25

