

The CCD's experiments to search for Light Dark Matter

DAMIC-M status and first results

Rocio Vilar cortabitarte for the DAMIC-M Collaboration

AstroHEP-PPCC24 Reunión Nacional: Planes complementarios de Astrofísica y altas Energías Zaragoza, 5-7 junio, 2025

Outline What we could do with CCDs

- **O** Introduction
	- CCDs as particle detectors for DM
- DAMIC-M in a nutshell
	- **O** Design and Background
	- **O** Calibrations
- Low Background Chamber (LBC)
	- **O** First results: DM-e scattering / Daily modulation
- Other initiatives with CCDs
- O Conclusions

Introduction

- O Small experiments can have a huge impact in meaningful dark matter models.
- What we need to explore **sub-GeV rang**e:
	- O extremely low thresholds (~few eV) \rightarrow to access smaller WIMP masses.
	- O Scalable technologies to increase the number of interactions in the target.
	- using both nuclear/ electronic recoils from DM-interactions.
- Aim to measure interactions with matter:
	- Elastic scattering off nuclei (standard WIMP scenarios) → mχ = 1-1000 GeV c−2
	- Inelastic scattering off electrons (dark sector couplings) → mχ = 1-1000 MeV c−2
	- O DM absorption by bound electron (dark sectors and ALPs) → m_X = 1-1000 eV c−2

Theoretical motivation combined with technological opportunities makes the moment right for the search below 1 GeV.

 \bullet Detectors with and extremely low backgrounds (~sub dru) \rightarrow Low and controlled backgrounds to identify the rarest signals and probe the smallest cross sections

- Charge-coupled devices have been used for a long time as telescope cameras (DES,CAHA, JAVALAMBRE,EUCLID, Vera Rubin, etc)
- They were adapted and reimagined for underground Dark Matter detection:
	- **O** demonstrated by DAMIC at SNOLAB
	- **O** on-going experiments DAMIC-M and SENSEI
	- **O** R&D work on OSCURA
- Why? Silicon is a good candidate -> light (A=28), mono-crystalline material is clean, uniform, and can make thick
	- \bullet e-h pairs produce (~3.77 ev required) \rightarrow Charge is collected near the surface
	- **O** Precise spatial resolution and good energy resolution \rightarrow using the diffusion 3D reconstruction
	- **O** Conventional CCDs are limited to noise of $-2e^- \rightarrow$ single electron resolution to ionization signals, 2-3 electron threshold $(-5$ -10 eV)
	- Low dark current (2x10-22 A/cm2, <0.001 e/pixel/day (at 140K))

Introduction CCDs as particle detectors for DM

CCDs as particle detectors for DM

- \bullet After exposure of the active target \rightarrow charge generations and collection, the readout take place
- **O** In a vertical transfer one row of pixels is moved towards the horizontal register
- **O** The horizontal register is moved pixel-by-pixel to a readout amplifier \rightarrow last horizontal pixel falls into a skipper amplifier
- allows multiple sampling of the same pixel without corrupting the charge packet \rightarrow Single Electron Resolution (SER)
- **O** Readout noise decrease by a factor 1/sqrt(N)
- **O** Reduce the low frequency noise $(1/f) \rightarrow now$ subdominant
- But readout time increase ∼ Nskip

CCDs as particle detectors for DM, improve resolution

Sensitive Mass

Resolution (readout noise) -0.1 eV 2-e electron thresholds (~eV)

 -0.1 eV 2-e electron thresholds (~eV)

 -0.1 eV 2-e electron thresholds (~eV)

 -0.1 eV 2-e electron thresholds (~eV)

WIMP-nucleus elastic scattering: *can also detect secondary electron recoils from inelastic Migdal effect

241Am → Calibration of the low-energy Compton background (PRL 106 (2022) 092001)

- Understanding Gamma scattering with electrons bound in semiconductors
- **O** First measurement of Compton scattering on valence e- below 100 eV
- Use full QM calculation (FEFF model) better agreement than relativistic impulse approximation (RIA)

DAMIC-M progress Calibrations : Different radioactive sources

- **241Am** → Calibration of the low-energy Compton background (PRL 106 (2022) 092001)
	- Understanding Gamma scattering with electrons bound in semiconductors
	- **O** First measurement of Compton scattering on valence e- below 100 eV
	- Use full QM calculation (FEFF model) better agreement than relativistic impulse approximation (RIA)
- **241Am 9Be** → Distinguishing nuclear recoils signals from electronic recoil backgrounds (arXiv:2309.07869)
	- \bullet Induced defect by neutron source \rightarrow NR dislocates atoms from the crystal lattice, stable for at least 12h
	- **O** 0.1% of ER with $E < 85$ keV are spatially correlated with a defect. 50% efficiency defect identification at 8 keV.
	- \bullet could enhance the sensitivity of future CCD experiments \rightarrow Still optimize the thermal stimulation strategy, explore optical stimulation, etc

DAMIC-M progress Calibrations : Different radioactive sources

DAMIC-M p

241Am → Calibration of the low-energy Compton background (PRL 106 (2022) 092001)

- Understanding Gamma scattering with electrons bound in semiconductors
- **O** First measurement of Compton scattering on valence e- below 100 eV
- Use full QM calculation (FEFF model) better agreement than relativistic impulse approximation (RIA)
- **241Am 9Be** → Distinguishing nuclear recoils signals from electronic recoil backgrounds (arXiv:2309.07869)
	- \bullet Induced defect by neutron source \rightarrow NR dislocates atoms from the crystal lattice, stable for at least 12h
	- **O** 0.1% of ER with $E < 85$ keV are spatially correlated with a defect. 50% efficiency defect identification at 8 keV.
	- \bullet could enhance the sensitivity of future CCD experiments \rightarrow Still optimize the thermal stimulation strategy, explore optical stimulation, etc
- **124Sb/9BeO-124Sb/Al** → Ionisation efficiency of nuclear recoils Final results will be published soon (previous Phys. Rev. D 94, 082007 (2016))
	- Photoneutron source used to produce mono-energetic neutrons (~23 keV neutrons)
	- GEANT4 and MCNP simulations were used to generate the nuclear recoil spectrum.
	- Measured ionization spectrum and simulated nuclear recoil spectrum were analyzed to produce the ionization efficiency down to $>$ ~ 18 eV ionization energy

First Science Data:

- **O** DM-electron scattering search
- **O** daily modulation search

Low Background Chamber, LBC A DAMIC-M prototype/test detector

- A low background chamber (~10 dru) apparatus is already operating at the LSM since February 2022
- **Low background studies** (materials, cleaning procedures, surface vs bulk, etc.),
- **Characterisation of CCDs** in low background environment (with a special attention to dark current and noise) and other DAMIC-M components
	- **Test of other subsystems** (CCD controller and electronics, slow control, DAQ software, data transfer and data quality monitoring)
	- **O** Integration/operation of DAMIC-M electronics

Low Background Chamber, LBC First science results DM-e scattering [\(PhysRevLett.130.171003\)](https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.130.171003)

Data collected during LBC commissioning with 6kx4k CCDs and 10x10 bin. Dark current sufficiently low for a first DM search 3.68 x 108 pixels selected **->** Total exposure time of 85.23 g days (SR1,SR2) 10^8

- **O** Current cross section constraints for masses \leq 3 MeV allow for **significant DM interactions** while passing through Earth.
- **O** Modify the DM flux and velocity distribution at the detector, resulting in **daily modulation of the DM** signal

$$
\frac{dR}{dE_e} \propto \bar{\sigma}_e \int \frac{dq}{q^2} \left[\int \frac{f(\mathbf{v}, t)}{\mathbf{v}} d^3 \mathbf{v} \right] |F_{\rm DM}(q)|^2 |f_{\rm c}(q, E_e)|^2
$$

- DAMIC-M expected background should be uniform with time.
	- The non-observance of periodicity in the signal will \bullet improve the upper limits set for the 1e-
	- The 8779 images used before provide a measurement of the charge distribution every ~10 min, allowing for a meaningful search for a daily modulation

We use a modified version of VERNE (solid line; Lantero-Barreda and Kavanagh) for fast calculation of the DM speed distribution, in excellent agreement with the 3D DAMASCUS (dots) simulation

- A **likelihood fit to dat**a is performed using F(ti|θ) for the mass parameter space.
- **O** The fit finds no preference for signal at any mass.
- The correspondent exclusion limits are obtained with a \bullet 90% C.L.

13 Combined results The daily modulation analysis improves our PRL limits below 3 MeV by up to 2 orders of magnitude

Other initiatives with CCDs

Skipper CCDs Radiopurity mEasurEmeNt sERvice (SCREENER)

- **O** The main goal of the CCD setup at LCS is to characterise radiogenic and cosmogenic backgrounds
- For DAMIC-M Experiments but as installation of radiopurity for LSC: highly sensitive to certain radioisotopes as: 32Si, 238U,232Th and 210 Pb using coincidence analysis and Energy spectrum
	- Upper limit is orders of magnitude better than the sensitivity obtained by direct assay techniques

 Bq/kg

ROW

[Journal of Instrumentation](https://iopscience.iop.org/journal/1748-0221), [Volume 16,](https://iopscience.iop.org/volume/1748-0221/16) [June 2021](https://iopscience.iop.org/issue/1748-0221/16/06)

Other initiatives with CCDs

Skipper CCDs Radiopurity mEasurEmeNt sERvice (SCREENER)

- **O** The main goal of the CCD setup at LCS is to characterise radiogenic and cosmogenic backgrounds
- For DAMIC-M Experiments but as installation of radiopurity for LSC: highly sensitive to certain radioisotopes as: 32Si, 238U,232Th and 210 Pb using coincidence analysis and Energy spectrum
	- Upper limit is orders of magnitude better than the sensitivity obtained by direct assay techniques

6120

1002

998

996

994

992

 $990 -$

988

6100

ROW

[Journal of Instrumentation](https://iopscience.iop.org/journal/1748-0221), [Volume 16,](https://iopscience.iop.org/volume/1748-0221/16) [June 2021](https://iopscience.iop.org/issue/1748-0221/16/06)

Other initiatives with CCDs

Skipper CCDs Radiopurity mEasurEmeNt sERvice (SCREENER)

- **O** The main goal of the CCD setup at LCS is to characterise radiogenic and cosmogenic backgrounds
- For DAMIC-M Experiments but as installation of radiopurity for LSC: highly sensitive to certain radioisotopes as: 32Si, 238U,232Th and 210 Pb using coincidence analysis and Energy
	- spectrum
	- Upper limit is orders of magnitude better than the sensitivity obtained by direct assay techniques

The challenges are to increase mass (from 1s to 100s) while reducing the background (2 orders of magnitud)

- Oscura builds on existing efforts: DAMIC-M success essential for the Oscura program→ operating kg size detector, understanding of backgrounds, and dark curren
	-

O The challenges are to increase mass (from 100s to 10,000s CCDs) and to reduce the backgrounds (3 orders of magnitude) \rightarrow Major R&D->20,000 CCDs (smaller format), 10kg 20 Gpixels low noise electronics, multiplexing 10x lower background than DAMIC-M goal (0.01 dru) 16

Other initiatives with CCDs What is next with skipper CCDs

DAMIC-M builds on existing efforts \bullet

Other initiatives with CCDs Future Experiments with CCDs: OSCURA (arXiv:2304.04401)

- Oscura conducted a major R&D
- **Mass production** of science-grade skipper-CCDs
- **O** New sensors packaging and cryogenics for multi-kg detectors
	- **O** In summer 2021 we received first batch of Oscura prototype skipper-CCDs (1278 x 1058 pix),
	- **O** demonstrated the success of the fabrication
	- O Operation in $LN2 \rightarrow Demonstrated$ stable operation
- New cold front-end electronics for thousands of readout channels
- **O** Low radiation background design
	- **O** isotopic contamination on front-end electronics, cables and components near the sensors
	- **O** External backgrounds
		- **O** Outer shield: lead, polyethylene
		- **O** Inner shield: ancient lead and electroformed copper

Super Module (16 MCMs)

Ξ က

- **O** 10 prototype ceramic MCMs and the discrete readout electronics
- Largest ever built instrument with skipper-CCDs controlled by 1 LTA → Demonstrates electronics solution
- O Setup is being used to develop analysis software and could be used for early science

Other initiatives with CCDs Future Experiments with CCDs: OSCURA (arXiv:2304.04401)

18

 \cdot \sim \cdot \sim \cdot

 \blacktriangleright

 \cdot

 ~ 1

 \sim \sim

Other initiatives with CCDs Oscura early science ([JHEP02\(2024\)072\)](https://link.springer.com/article/10.1007/JHEP02(2024)072)

- With a partial load of the sensors (about $10\%) \rightarrow$ Science can be done
	- O Using the NuMi beam at FNAL \rightarrow Search for millicharge particles.
	- Multiple-hit search could reduce bkgds
	- Exclusion limits are promising!
- mCPs skipper-CCD detector:
	- Large-mass setup (tracker?)
	- **O** Location @ accelerator facilities

Other initiatives with CCDs at LHC in the forward side **Oscura early science ([JHEP02\(2024\)072\)](https://link.springer.com/article/10.1007/JHEP02(2024)072)**

- **OAssuming a 1 kg detector with 32 layers for tracking, ~1018 POT from the** NuMI beam (120 GeV protons) and a flat background of 1000 evts/kg/ day/keV
- **O** For higher ε the mean free path of the mCPs is smaller than the width of the tracker, increasing the probability of multiple hits

Other initiatives with CCDs MOSKITA: MObile SKIpper Testing Apparatus

21

wisioned location of MOSKITA at the

milliQan

We are going to test the skipper CCDs at LHC:

- Measure noise with and without LHC beam(from the beam, the rock and the cosmic among others)
- Using a setup that it is already working at Fermilab in the MINOS cavern to test the CCDs sensors
- **OLocated in drainage gallery at LHC collision point 5 near** CMS
- \mathbf{O} η ~ 0.1, 17m of rock provide natural shielding from beam particles

- Electron-counting skipper-CCD technology allows exploring the dark sector **O** Searching for LDM at underground laboratories with skipper-CCDs is a robust experimental
- program
- DAMIC-M is steadily moving towards its goal of installation, and commissioning at the end of 2024.
- \bullet CCD fabrication almost complete (85%) and starting production of the other components of the detector
- Low Background Chamber already produced world leading results on DM searches, currently focus on background and calibration measurements, and characterization of
	- DAMIC-M components
- Development of multi-kg low-background skipper-CCD detectors is ongoing Oscura Millicharged particles search with skipper-CCDs at accelerators seems promising

Conclusiones

Details

Low Background Chamber, LBC First science results DM-e scattering [\(PhysRevLett.130.171003\)](https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.130.171003)

mediator interactions with two CCDs in a few months

DAMIC-M 90% C.L. upper limits on DM-electron interactions through an ultra-light mediator obtained with QEdark, DarkELF (dashed), and EXCEED-DM theoretical models for the crystal forms

O World leading exclusion limits on DM-electron interactions in the mass ranges [1.6 - 1000 MeV] and [1.5 - 15.1 MeV] for ultralight and heavy

24

The daily modulation analysis improves our PRL limits below 3 MeV by up to 2 orders of magnitude

