

RADES project

David Díez Ibáñez

on behalf of RADES group

University of Zaragoza

6/6/2024

Centro de Astropartículas y Física de Altas Energías Universidad Zaragoza

Index

- 1) Axion dark matter
- 2) Haloscope concept
- 3) Rades setups
- **4)** Future experiments
- 5) Quantum sensors for haloscopes

Axion dark matter

• Axions from astronomical sources (Baby IAXO from Sun)

• Axions produced on lab (ALPS II)

• Axions in the galactic halo as dark matter

Axion dark matter

Axion's parameter space

Haloscope concept

ADMX

Power:

$$P_a = g_{a\gamma}^2 \rho_{\rm DM} \frac{\beta}{1+\beta} \frac{1}{m_a} B^2 V Q_L G^2,$$

Haloscope concept

Scanning rate:

$$dt = \Delta v_a \left(\frac{\frac{S}{N}k_B T_{sys}}{P_d}\right)^2 = \frac{m_a}{Q_a} \left(\frac{\frac{S}{N}k_B T_{sys}}{P_d}\right)^2$$

Is used as figure of merit:

$$\frac{dm_a}{dt} = \frac{Q_a}{Q_l} \left(\frac{P_d}{\frac{S}{N}k_B T_{sys}}\right)^2 = Q_a Q_l \kappa^2 g_{a\gamma}^4 \left(\frac{\rho_a}{m_a}\right)^2 B_e^4 C^2 V^2 \left(\frac{S}{N}k_B T_{sys}\right)^{-2}$$

Rades setups

Future experiments

BabyIAXO - Rades

Scaled version 10 times smaller

Future experiments

MPP Munch - Rades

Vertical cut tuning Frequency range 8-9 GHz

Counting photons

Dark count rate for SPD: 1-100 mHz

 10^{3}

 $\lambda_{\mathrm{thresh}}$

10⁶

 10°

Dilution refrigerator

Dark photon sensitivity plot

 Dixit et al. Searching for dark matter with a superconducting qubit, Phys. Rev. Lett. 126

Thank you very much!!

Background slides

Two tone spectroscopy

Rabi chevrons

Single shot

Characteristic times (Relaxation)

Pulse sequence

Characteristic times (decoherence)

*P.Krantz, et.al., Appl. Phys. Rev. 6, 021318 (2019)

Ramsey chevrons (thermal photons in the cavity)

Detection protocol

ERC sensitivity bands

200-500 MHz

8-18 GHz