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Large-scale structure

- Universe filled with density 
fluctuations 

- Structure only only visible 
through galaxies (distribution) 
and photons (weak lensing) 

- Galaxies and photons here are 
functioning as test particles - 
tracing out the gravitational 
field 

- Most low-redshift surveys have 
measured the transfer 
function. 

- Need very large volumes to 
measure primordial power 
spectrum and determine initial 
conditions (independently 
from CMB) Chabanier et al., 2019
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Bull (2016)

Sampling the redshift desert

- In the near future, we will sample the “redshift desert” with different 
missions and surveys.
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Chen & Schwartz (2016)

NVSS Healpix map 

Radio Continuum Surveys

• Continuum surveys measure 
in tens i ty o f to ta l rad io 
emission, across waveband 

• Emission dominated by 
synchrotron, so spectrum 
(almost) featureless 

• Measure RA and Dec of 
sources, but need other 
information for redshift



MeerKAT:  
Single dish 

 0.58-1.65 GHz 
FoV: 1 sq. deg

SKA precursors

MWA 
Dipole antenna 

0.15 GHz 
FoV: 30 sq. deg

ASKAP 
0.7-1.8 GHz 

FoV: 30 sq. deg

• SKA-low built in Australia (MWA site) 

• 100 stations, each containing 90 arrays of dipole antenna. Freq: 50-350 MHz 

• SKA-mid built in South Africa (Karoo site) 
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- 36 12-metre antennas spread over a region 6 km in diameter 

- frequency band of 700–1800 MHz, with an instantaneous bandwidth of 300 MHz 

- FoV ~ 30deg2, pointing accuracy > 30 arcsec 

- Angular resolution ~ 10 arcsec 

- 75% of the time: Survey projects

EMU: Continuum

WALLABY: 
Spectroscopy 21cm

FLASH: HI absortion

VAST: Slow transients

CRAFT: Fast transients

POSSUM: MW 
magnetic fields

DINGO: HI evolution

COAST: PTA

VLBI: long baseline

RACS: Continuum

Australian Square Kilometre Array Pathfinder (ASKAP)

7



Evolutionary Map of the Universe (EMU)

• Main continuum survey with ASKAP 
• Covering up to declination +30 degrees (30000 sq. deg) 
• Expected noise of 15 μJy. 
• Resolution of ~12″ to 15″ FWHM 
• Expected 70 million sources 
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1. Angular correlation function of 
radio galaxies 

2. Cosmic Magnification of high-z 
radio galaxies by low-z optical 
foreground galaxies 

3. Cosmic Magnification of CMB 
by radio galaxies 

• Cross-correlation between radio 
density and CMB on small scales 

4. Integrated Sachs-Wolfe effect 

• Cross-correlation between radio 
density and CMB on large scales

Image credit: Tamara Davis

Cosmological observables
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PIlot survey
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- Rms of 30 μJy

• We create the random catalogue that matches the observing 
conditions given by the RMS map. 

• RMS of about 30 μJy

Pilot survey
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• By eye, reasonable fit to prediction from Planck + SKADS 
(Wilman, 2009) 

• Relative amplitude shift between islands and components

Clustering of the EMU pilot survey

12Norris et al. 2021, PASA
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Clustering statistics
- The error depends on the sample variance and on the shot noise. 
- Angular clustering depends on the redshift distribution N(z) and the galaxy bias. 
- N(z) from T-RECS simulation (Bonaldi et al., 2016) and theoretical prescription 

for the bias.

Angular power spectrum:

- Asorey & Parkinson 2021, MNRAS
-



- Rapid ASKAP Continuum Survey (RACS, fast) 
- Technology demonstration, no major science goals 

- We acknowledge the Wajarri Yamatji people as the traditional owners of the 
Observatory site.

Image credit: CSIRO

Rapid ASKAP Continuum Survey (RACS)

14



°0.50 °0.25 0.00 0.25 0.50

(c) weighted densityfield N/(N̄w) ° 1

0.50 0.75 1.00 1.25 1.50

(a) weights w

°0.25 0.00 0.25 0.50

(b) raw densityfield N/N̄ ° 1

Unweighted Randoms

Weighted, 
and CMB 

mask applied

RACS Source density
- 1.26 Million galaxies (EMU will have 40 Million). 

-
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°0.50 °0.25 0.00 0.25 0.50

weighted densityfield N/(N̄w) ° 1

RACS x Planck SMICA R3

- Removed Galactic plane ( ) 
- Flux cut of 4 mJy 
- Construct weight map w using SKADS simulations 
- Apply Planck mask 
- Cut regions with w < 0.5 
- Apply weights to number count and obtain over-density field

|b | < 5∘

16B. Bahr-Kalus, D. Parkinson D., JA, S. Camera, C. Hale,  F. Qin, 2022, MNRAS



- We use 4 different methods to obtain the 
gg covariance matrix: analytic, graphical 
lasso, sample covariance from 3000 
F lask s imu la t ions and jackkn i fe 
resampling from the data.

Covariance matrices
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- Same for gT spectrum 

-  from mocks only 

- Use of sample cov for the 
main results 

-  cov does not 
contribute to 

gg × gT

gg × gT
χ2

gg × gT
gg



gg gT

 

relative to null hypothesis of no correlation

S
N

=
∑ℓ,ℓ′ 

C(data)
ℓ Kℓℓ′ C(model)

ℓ′ 

∑ℓ,ℓ′ 
C(model)

ℓ Kℓℓ′ C(model)
ℓ′ 

≈ 2.8Good agreement at small scales, 
Large scale power offset 

(Galaxy power spectra information at > 
40 not included in analysis)

ℓ

CXY
ℓ = ⟨aX

ℓma*Y
ℓm⟩ = ⟨sXsY⟩ + ⟨nXnY⟩

RACS measurements
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- Large scale power excess seems 
to be correlated with declination 

- Close to south pole errors 
smaller, and mean close to 
predicted value 

- Close to equator number of 
counts smaller and sky noise 
large, power is higher than 
expected 

- Hypothesis is that power excess 
is not non-Gaussianity causing 
scale-dependent bias, but a 
systematic caused by data 
reduction procedure
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Some systematics
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W`(k) =

Z
j`(kr)b(z)

dN(z)

dz
dr

Cij
` =

2

⇡

Z
W i

` (K)W j
` (k)P (k)k2dk

- We vary  and define  such 
that  

- more Bayesian approach to quantify 
significance of ISW detection 

-  and  degenerate in , 
broken in combined  and  
analysis 

-  also degenerate with ,  

- analysis with  inferred from 
SKADS, as well as from T-RECS

b(z) AISW
CgT

ℓ,measured = AISWCgT
ℓ,model

AISW b(z) CgT
ℓ

Cgg
ℓ CgT

ℓ

b(z) dN(z)
dz

N(z)

Cosmological constraints
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- Consider three bias 
parameterisations: 
-  constant 
-  
-  

- Always take full -range into 
account for  

- Repeat  analysis with and 
without  

- Use scatter to estimate systematic 
uncertainty

b(z)
b(z) = b0 + b1z
b(z) = b0 exp(βz)

ℓ
CgT

ℓ
Cgg

ℓ
ℓ < 40

0.6 0.8 1.0 1.2 1.4
AISW

combined, ` > 40 only
TRECS n(z), ` > 40, exponential bias

TRECS n(z), ` > 40, linear bias
TRECS n(z), ` > 40, constant bias

SKADS n(z), ` > 40, exponential bias
SKADS n(z), ` > 40, linear bias

SKADS n(z), ` > 40, constant bias
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AISW = 0.94+0.42
°0.41

 detection of ISW effect with more 
conservative Bayesian analysis 

Probability of  is 98.9%

2.3σ

AISW > 0

Cosmological constraints
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Summary
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• Measurements of the clustering of radio galaxies can be used to determine the bias of 
radio populations and the cosmological parameters 

• The effect of anisotropic noise (location-dependent completeness) can be modelled 
when generating randoms, to remove any potential bias 

• We used FLASK to generate mock catalogues with the same clustering power 
spectrum as our fiducial cosmology, to test our pipeline and estimate covariance matrix 

• We measured angular power spectrum of radio continuum sources detected by RACS 
at 888 MHz, in auto-and cross-correlation with Planck CMB maps 

• Angular power spectra of RACS galaxies consistent with prediction from ΛCDM, 
except on large scales where we detect an excess. 

• Detect cross-correlation between galaxy distribution and CMB temperature 
distributions. Significant at   relative to null hypothesis. 

• Parameterise ISW amplitude as . Combining the angular auto- and cross-power 
spectra, and combining measurements obtained under different assumptions in 
conservative Bayesian way, we get 

2.8σ
AISW

AISW = 0.94+0.42
−0.41 (2.3σ/98.9%)



¡Thank you!
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