

Cosmology from SKA Observatory precursors

Jacobo Asorey Universidad Complutense de Madrid

In collaboration with:

Benedict Bahr-Kalus (KASI), Stefano Camera (UoT), Catherine Hale (ROE), David Parkinson (KASI), Ignacio Sevilla-Noarbe (Ciemat), Fei Qin (KASI) and members of the EMU and RACS collaborations

B. Bahr-Kalus, D. Parkinson D., JA, S. Camera, C. Hale, F. Qin, 2022, MNRAS

1ª Reunión Nacional Planes Complementarios de Astrofísica y Altas Energías

MINISTERIO DE UNIVERSIDADES

Universidad de Zaragoza, 6/6/2024

Λ or not Λ ?

DESI Collaboration: 2404.03002

2

Large-scale structure

- Universe filled with density fluctuations
- Structure only only visible through galaxies (distribution) and photons (weak lensing)
- Galaxies and photons here are functioning as test particles tracing out the gravitational field
- Most low-redshift surveys have measured the transfer function.
- Need very large volumes to measure primordial power spectrum and determine initial conditions (independently from CMB)

Chabanier et al., 2019

Large-scale structure

- Universe filled with density fluctuations
- Structure only only visible through galaxies (distribution) and photons (weak lensing)
- Galaxies and photons here are functioning as test particles tracing out the gravitational field
- Most low-redshift surveys have measured the transfer function.
- Need very large volumes to measure primordial power spectrum and determine initial conditions (independently from CMB)

Chabanier et al., 2019

Large-scale structure

- Universe filled with density fluctuations
- Structure only only visible through galaxies (distribution) and photons (weak lensing)
- Galaxies and photons here are functioning as test particles tracing out the gravitational field
- Most low-redshift surveys have measured the transfer function.
- Need very large volumes to measure primordial power spectrum and determine initial conditions (independently from CMB)

Chabanier et al., 2019

Sampling the redshift desert

- In the near future, we will sample the "redshift desert" with different missions and surveys.

DES	· · ·		· · · ·		Ontion
	SKA	1-LOW Rebas	se.		Dedie
HETDI	ΞX				Radio
SKA1-L	.OW Alt.				Optica
WFIRST (Nancy Gr	ace Roman S	pace Telescope	e)		Radio
SKA1-MID B1 Alt.					IR Padia
Euclid					
DESI					IR
SKA1-MID B1 Rebase					Optica
LSST (Vera C. Bubin Obs.)					Radio
SKA2	-				Optica
					Radio
DOSS	-				IR
					Optica
	_				Radio
SKA1-IVIID B2 Rebase.	E	:MU			Radio
0 1 2	3	4	5	6	Radio

 \boldsymbol{z}

Radio Continuum Surveys

- Continuum surveys measure intensity of total radio emission, across waveband
- Emission dominated by synchrotron, so spectrum (almost) featureless
- Measure **RA** and **Dec** of sources, but need other information for redshift

NVSS Healpix map

Chen & Schwartz (2016)

SKA precursors

SKA-low built in Australia (MWA site) 100 stations, each containing 90 arrays of dipole antenna. Freq: 50-350 MHz SKA-mid built in South Africa (Karoo site)

MeerKAT: Single dish 0.58-1.65 GHz FoV: 1 sq. deg

MWA Dipole antenna 0.15 GHz FoV: 30 sq. deg

ASKAP 0.7-1.8 GHz FoV: 30 sq. deg

Australian Square Kilometre Array Pathfinder (ASKAP)

- 36 12-metre antennas spread over a region 6 km in diameter
- frequency band of 700–1800 MHz, with an instantaneous bandwidth of 300 MHz
- FoV ~ 30deg², pointing accuracy > 30 arcsec
- Angular resolution ~ 10 arcsec
- 75% of the time: Survey projects

DINGO: HI evolution

POSSUM: MW magnetic fields

FLASH: HI absortion

EMU: Continuum

RACS: Continuum

WALLABY:

Spectroscopy 21cm

CRAFT: Fast transients

COAST: PTA

VAST: Slow transients

VLBI: long baseline

Evolutionary Map of the Universe (EMU)

- Main continuum survey with ASKAP
- Covering up to declination +30 degrees (30000 sq. deg)
- Expected noise of 15 µJy.
- Resolution of ~12" to 15" FWHM
- Expected 70 million sources

Cosmological observables

- Angular correlation function of radio galaxies
- Cosmic Magnification of high-z radio galaxies by low-z optical foreground galaxies
- Cosmic Magnification of CMB by radio galaxies
 - Cross-correlation between radio density and CMB on small scales
- 4. Integrated Sachs-Wolfe effect
 - Cross-correlation between radio density and CMB on large scales

Image credit: Tamara Davis

Pllot survey

Pilot survey

- We create the random catalogue that matches the observing conditions given by the RMS map.
- RMS of about 30 µJy

Clustering of the EMU pilot survey

- By eye, reasonable fit to prediction from Planck + SKADS (Wilman, 2009)
- Relative amplitude shift between islands and components

Norris et al. 2021, PASA

Clustering statistics

- The error depends on the sample variance and on the shot noise.
- Angular clustering depends on the redshift distribution N(z) and the galaxy bias.
- N(z) from T-RECS simulation (Bonaldi et al., 2016) and theoretical prescription for the bias.

Angular power spectrum:

$$C_{\ell} = 4\pi \int \frac{dk}{k} \Delta^2(k) \left[W_{\ell}^g(k) \right]^2, \qquad \qquad W_{\ell}(k) = \int \frac{dN(\chi)}{d\chi} b(z) D(z) j_{\ell}[k\chi] d\chi.$$

Asorey & Parkinson 2021, MNRAS

Rapid ASKAP Continuum Survey (RACS)

- Rapid ASKAP Continuum Survey (RACS, fast)
 - Technology demonstration, no major science goals
- We acknowledge the Wajarri Yamatji people as the traditional owners of the Observatory site.

Baselines	22m - 6400m	All 36 antennas	
Resolution	15 arcsec		
Frequencies	700-1800 MHz	288 MHz bandwidth	
Integration	15 minutes		
Polarization	I, Q, U, V		
Image noise	~250 µJy		
Sky coverage	-90° < δ < +40°	903 tiles	

RACS Source density

1.26 Million galaxies (EMU will have 40 Million).

15

RACS x Planck SMICA R3

- Removed Galactic plane ($|b| < 5^\circ$)
- Flux cut of 4 mJy
- Construct weight map w using SKADS simulations
- Apply Planck mask
- Cut regions with w < 0.5
- Apply weights to number count and obtain over-density field

B. Bahr-Kalus, D. Parkinson D., JA, S. Camera, C. Hale, F. Qin, 2022, MNRAS

Covariance matrices

- We use 4 different methods to obtain the gg covariance matrix: analytic, graphical lasso, sample covariance from 3000 Flask simulations and jackknife resampling from the data.

- Same for **gT** spectrum
- $gg \times gT$ from mocks only
- Use of sample cov for the main results
- $gg \times gT$ cov does not contribute to χ^2

RACS measurements

gg

g

Good agreement at small scales, Large scale power offset (Galaxy power spectra information at ℓ > 40 not included in analysis)

RACS measurements

gg

g

Good agreement at small scales, Large scale power offset (Galaxy power spectra information at ℓ > 40 not included in analysis)

Some systematics

- Large scale power excess seems to be correlated with declination
 - Close to south pole errors smaller, and mean close to predicted value
 - Close to equator number of counts smaller and sky noise large, power is higher than expected
- Hypothesis is that power excess is **not** non-Gaussianity causing scale-dependent bias, but a systematic caused by data reduction procedure

Cosmological constraints

- We vary b(z) and define A_{ISW} such that $C_{\ell,\text{measured}}^{gT} = A_{\text{ISW}} C_{\ell,\text{model}}^{gT}$
- more Bayesian approach to quantify significance of ISW detection
- A_{ISW} and b(z) degenerate in C_{ℓ}^{gT} , broken in combined C_{ℓ}^{gg} and C_{ℓ}^{gT} analysis
- b(z) also degenerate with $\frac{dN(z)}{dz}$
- analysis with N(z) inferred from **SKADS**, as well as from **T-RECS**

$$C_{\ell}^{ij} = \frac{2}{\pi} \int W_{\ell}^{i}(K) W_{\ell}^{j}(k) P(k) k^{2} dk$$
$$W_{\ell}(k) = \int j_{\ell}(kr) b(z) \frac{dN(z)}{dz} dr$$

Cosmological constraints

- Consider three bias parameterisations:
 - b(z) constant
 - $b(z) = b_0 + b_1 z$
 - $b(z) = b_0 \exp(\beta z)$
- Always take full ℓ -range into account for C_ℓ^{gT}
- Repeat C_ℓ^{gg} analysis with and without $\ell < 40$
- Use scatter to estimate systematic uncertainty

 2.3σ detection of ISW effect with more conservative Bayesian analysis Probability of $A_{\rm ISW} > 0$ is 98.9%

Summary

- Measurements of the clustering of radio galaxies can be used to determine the bias of radio populations and the cosmological parameters
- The effect of anisotropic noise (location-dependent completeness) can be modelled when generating randoms, to remove any potential bias
- We used FLASK to generate mock catalogues with the same clustering power spectrum as our fiducial cosmology, to test our pipeline and estimate covariance matrix
- We measured angular power spectrum of radio continuum sources detected by RACS at 888 MHz, in auto-and cross-correlation with Planck CMB maps
- Angular power spectra of RACS galaxies consistent with prediction from ACDM, except on large scales where we detect an excess.
- Detect cross-correlation between galaxy distribution and CMB temperature distributions. Significant at 2.8σ relative to null hypothesis.
- Parameterise ISW amplitude as $A_{\rm ISW}$. Combining the angular auto- and cross-power spectra, and combining measurements obtained under different assumptions in conservative Bayesian way, we get $A_{\rm ISW} = 0.94^{+0.42}_{-0.41}$ (2.3 $\sigma/98.9\%$)

Thank you!