Limits on neutrino masses: Tension between terrestrial and cosmological results

MINISTERIO DE CIENCIA, INNOVACIÓN Y UNIVERSIDADES

Financiado por la Unión Europea NextGenerationEU

Plan de Recuperación, Transformación y Resiliencia

Olga Mena (IFIC, CSIC-UV)

understanding of the history, structure and future fate of the Universe"

Forbes

20,733 views | Dec 5, 2017, 10:00am

How Neutrinos Could Solve The Three Greatest Open **Questions In Physics**

Ethan Siegel Senior Contributor Starts With A Bang Contributor Group ① Science

The Universe is out there, waiting for you to discover it.

12,337 views | Sep 17, 2019, 02:00am

Billionaires

This Is Why Neutrinos Are The Standard Model's **Greatest Puzzle**

Innovation

Ethan Siegel Senior Contributor Starts With A Bang Contributor Group () Science The Universe is out there, waiting for you to discover it.

2015 Nobel Physics Prize to Takaaki Kajita and Arthur B. McDonald "for the discovery of neutrino oscillations, which shows that neutrinos have mass. [...] New discoveries about the deepest neutrino secrets are expected to change our current

Small Business Leadership Money Business),070 views | Mar 7, 2019, 02:00am Jul 13, 2016, 11:28am EDT How Much Of The Dark Matter **Could Dark Energy Be Caused Could Neutrinos Be? By Frozen Neutrinos?** Ethan Siegel Senior Contributor Starts With A Bang Contributor Group ① Ethan Siegel Senior Contributor The Universe is out there, waiting for you to discover it. Starts With A Bang Contributor Group ① Science The Universe is out there, waiting for you to discover it.

0.1 %≤ Neutrinos ≤0.3%

Hidrogen & Helium 4%

Dark matter 25%

Our (ACDM) universe today

Dark energy 70%

Cosmic Microwave Background 0.001%

THE NEUTRINO MENU

- Antipasto: Neutrino oscillation bounds
- Primo piatto: Cosmology & $\sum m_{\nu}$
- Secondo piatto: Tightest neutrino mass bounds
- Dolce: Take home messages

Dirac or Majorana massive neutrinos:

NO Credits: S. Gariazzo

$$\nu_{\tau} \qquad \Delta m_{21}^2 = (6.94 - 8.14) \times 10^{-5}$$

 $\Delta m_{21}^2 |\Delta m_{31}^2|_{NO} = (2.47 - 2.63) \times 10^{-5}$
 $\Delta m_{31}^2 |\Delta m_{31}^2|_{IO} = (2.37 - 2.53) \times 10^{-5}$

Oscillation measurements of the mass splittings translate into a lower bound for the neutrino mass, depending on the mass ordering:

We are sure then that two neutrinos have a mass above:

 $\sqrt{\Delta m_{21}^2} \simeq 0.008 \text{ eV}$

and that at least one of these neutrinos has a mass larger than

 $\sqrt{|\Delta m_{31}^2|} \simeq 0.05 \text{ eV}$

THE NEUTRINO MENU

Antipasto: Neutrino oscillation bounds

• Primo piatto: Cosmology & $\sum m_{\nu}$

Secondo piatto: Tightest neutrino mass bounds

Dolce: Take home messages

Early Integrated Sachs Wolfe effect (ISW). Shirt in the angular position of the near

 $0.5~{
m eV}$

200 400 600 800 100 1200 1400

Strong degeneracy between $\pmb{\Sigma}\pmb{m}_\nu$ and the Hubble constant $H_0!$

Gravitational Lensing

Credits: ESA and Planck collaboration

Planck TTTEEE+lowT+lowE+lensing

6 million neutrinos can't weigh more than 3 electrons

$m_{\nu} < 0.24 \text{ eV } 95\% \text{CL}$ Planck Coll. A&A'20

THE NEUTRINO MENU

- Antipasto: Neutrino oscillation bounds
- Primo piatto: Cosmology & $\sum m_{\nu}$
- Secondo piatto: Tightest neutrino mass bounds
- Dolce: Take home messages

Large scale structure: $\sum m_v$

Neutrino masses suppress structure formation on scales larger than their free streaming scale when they turn non relativistic.

Neutrinos with eV or sub-eV masses are HOT relics with LARGE thermal velocities! $\langle v_{\text{thermal}} \rangle \simeq 81(1+z) \left(\frac{\text{eV}}{m_{\nu}}\right) \text{ km s}^{-1}$

Cold dark matter instead has zero velocity and therefore it clusters at any scale!

Baryon Acoustic Oscillations

tracer	redshift	$N_{ m tracer}$	$z_{ m eff}$	$D_{ m M}/r_{ m d}$	$D_{ m H}/r_{ m d}$	$r~{ m or}~D_{ m V}/r_{ m d}$	$V_{ m eff} \ (m Gpc^3$
BGS	0.1 - 0.4	300,017	0.30			7.93 ± 0.15	1.7
LRG	0.4 - 0.6	$506,\!905$	0.51	13.62 ± 0.25	20.98 ± 0.61	-0.445	2.6
LRG	0.6 - 0.8	771,875	0.71	16.85 ± 0.32	20.08 ± 0.60	-0.420	4.0
LRG+ELG	0.8 - 1.1	$1,\!876,\!164$	0.93	21.71 ± 0.28	17.88 ± 0.35	-0.389	6.5
ELG	1.1 - 1.6	$1,\!415,\!687$	1.32	27.79 ± 0.69	13.82 ± 0.42	-0.444	2.7
\mathbf{QSO}	0.8 - 2.1	856,652	1.49			26.07 ± 0.67	1.5
Lya QSO	1.77 - 4.16	709,565	2.33	39.71 ± 0.94	8.52 ± 0.17	-0.477	

2021-2022=DESI Y1

Alam et al, SDSS IV Coll. PRD'21

Tightest bounds on $\sum m_v$

DESI Collaboration: DESI 2024 VI: Cosmological Constraints from the Measurements of Baryon Acoustic Oscillations

Tightest bounds on $\sum m_v$

DESI Collaboration: DESI 2024 VI: Cosmological Constraints from the Measurements of Baryon Acoustic Oscillations

Normal Ordering

Planck coll.

Inverted Ordering

95% CL limits

Tightest bounds on Σm_v

DESI Collaboration: DESI 2024 VI: Cosmological Constraints from the Measurements of Baryon Acoustic Oscillations

:						:
	model / dataset	$\Omega_{ m m}$	$H_0 \; [{\rm kms^{-1}Mpc^{-1}}]$	$\Sigma m_{ u} [{ m eV}]$	$N_{ m eff}$	_
_	$\Lambda { m CDM} {+} \sum m_{ u}$		944-1144-1-374-744-1-474-974-74-974-74-974-74-974-74-974-974			_
6.1948.11111.494 Hoteland	DESI+CMB	0.3037 ± 0.0053	68.27 ± 0.42	< 0.072		
-	$\Lambda { m CDM} + N_{ m eff}$					-
	DESI+CMB	0.3058 ± 0.0060	68.3 ± 1.1		3.10 ± 0.17	_
	$w{ m CDM}{+}{\sum m_ u}$					_
	DESI+CMB	0.282 ± 0.013	$71.1^{+1.5}_{-1.8}$	< 0.123		
	DESI+CMB+Panth.	0.3081 ± 0.0067	67.81 ± 0.69	< 0.079		
	DESI+CMB+Union3	0.3090 ± 0.0082	67.72 ± 0.88	< 0.078		
	DESI+CMB+DESY5	0.3152 ± 0.0065	67.01 ± 0.64	< 0.073		
						-

CMB+DESI BAO Y1

DESI Collaboration: DESI 2024 VI: Cosmological Constraints from the Measurements of Baryon Acoustic Oscillations

Tightest bounds on $\sum m_v$

$m_{\nu} < 0.072 \text{ eV} 95\% \text{ CL}$

CMB+DESI BAO Y1

DESI Collaboration: DESI 2024 VI: Cosmological Constraints from the Measurements of Baryon Acoustic Oscillations

10 millions of the heaviest neutrino can't weigh more than 1 electron

Tightest bounds on $\sum m_v$ $m_{\nu} < 0.072 \text{ eV} 95\% \text{ CL}$

Tightest bounds on $\sum m_v$ Deng Wang, Olga Mena et al, 2405.03368

Datasets	$\Sigma m_{ u} [{ m eV}]$	$H_0 ~[{ m km/s/Mpc}]$	Ω_m	σ_8		
CBS	$< 0.137 (2 \sigma)$	$67.54\substack{+0.52\\-0.45}$	$0.3130\substack{+0.0058\\-0.0067}$	$0.813\substack{+0.0110\\-0.0075}$		
CBSO	$< 0.135 (2 \sigma)$	$67.56\substack{+0.51 \\ -0.43}$	$0.3128\substack{+0.0056\\-0.0065}$	$0.813\substack{+0.0110\\-0.0077}$		
CBSA	$< 0.082 (2 \sigma)$	68.27 ± 0.38	0.3039 ± 0.0049	$0.8165\substack{+0.0081\\-0.0066}$		
CBSG	$< 0.059 (2 \sigma)$	68.70 ± 0.43	0.2991 ± 0.0054	0.8184 ± 0.0068		
CBSOA	$< 0.082 (2 \sigma)$	68.28 ± 0.38	0.3038 ± 0.0049	$0.8167\substack{+0.0081\\-0.0063}$		
CBSOG	$< 0.056 (2\sigma)$	68.70 ± 0.42	0.2991 ± 0.0053	0.8185 ± 0.0068		
CBSAG	$< 0.046 (2\sigma)$	69.04 ± 0.37	0.2949 ± 0.0047	0.8177 ± 0.0065		
CBSOAG	$< 0.049 (2 \sigma)$	69.02 ± 0.37	0.2951 ± 0.0047	0.8179 ± 0.0068		
\mathbf{CDS}	$< 0.093 (2 \sigma)$	68.20 ± 0.44	0.3045 ± 0.0056	$0.8156\substack{+0.0086\\-0.0068}$		
CDSO	$< 0.091 (2 \sigma)$	68.20 ± 0.43	0.3045 ± 0.0054	$0.8158\substack{+0.0084\\-0.0068}$		
\mathbf{CDSA}	$< 0.071 (2 \sigma)$	68.65 ± 0.37	0.2990 ± 0.0047	$0.8160\substack{+0.0078\\-0.0064}$		
\mathbf{CDSG}	$< 0.049 (2 \sigma)$	69.17 ± 0.40	0.2932 ± 0.0050	0.8179 ± 0.0069		
CDSOA	$< 0.065 (2 \sigma)$	68.69 ± 0.36	0.2984 ± 0.0044	0.8166 ± 0.0071		
CDSOG	$< 0.049 (2 \sigma)$	69.14 ± 0.40	0.2934 ± 0.0050	0.8174 ± 0.0067		
CDSAG	$< 0.045 (2 \sigma)$	69.38 ± 0.36	0.2906 ± 0.0045	0.8172 ± 0.0066		
CDSOAG	$< 0.043 (2 \sigma)$	69.38 ± 0.37	0.2906 ± 0.0045	0.8174 ± 0.0068		

Clear tension between oscillation and cosmological neutrino mass bounds

Deng Wang, Olga Mena et al, 2405.03368

Clear tension between oscillation and cosmological neutrino mass bounds

Tightest bounds on $\sum m_v$

Mass ordering status (after DESI)

Dataset**baseline** (CMB + DES baseline + SNeIabaseline + CCCMB (include ACT "ext baseline + SDSSbaseline + SH0ESbaseline + XSZbaseline + GRBaggressive combination

CMB + DESI (use HMc CMB (use ACT v1.2 like

		$\Lambda CDM + M_{\nu}$		$\Lambda \text{CDM} + M_{\nu} + w(z) \ge -1$	
		M_{ν}	$B_{\rm NO, IO}$	M_{ν}	$B_{\rm NO, IO}$
SI)		$< 0.072 {\rm e}^{-1}$	V 8.1	$< 0.064\mathrm{eV}$	12.3
		$< 0.081 {\rm e}^{-1}$	V 7.0	$< 0.068 \mathrm{eV}$	7.9
		$< 0.073 {\rm e}^{-1}$	V 7.3	$< 0.067 \mathrm{eV}$	8.0
tended data) + DESI		$< 0.072 {\rm e}^{-1}$	V 8.0	$< 0.065 \mathrm{eV}$	12.8
		$< 0.083 {\rm e}$	V 6.8	$< 0.070 \mathrm{eV}$	10.6
		$< 0.048 {\rm e}$	V 47.8	$< 0.047 \mathrm{eV}$	54.6
		$< 0.050 {\rm e}$	V 46.5	$< 0.044 \mathrm{eV}$	39.6
WRANEN MITTER MARKET STOREN	<u></u>	$< 0.072 {\rm e}^{3}$	V 8.7	$< 0.066 \mathrm{eV}$	15.4
(baseline + SH0ES + X)	$< 0.042\mathrm{e}$	V 72.6	$< 0.041{\rm eV}$	109.2	
code2020 for non-linear	$< 0.074 {\rm e}$	V 7.5	$< 0.065 \mathrm{eV}$	10.8	
elihood)		$< 0.082 {\rm e}^{-1}$	V 7.4	$< 0.072 \mathrm{eV}$	6.3
B_{ij}	$\ln B_{ij}$		Evidence	е	
$1 \le B_{ij} < 3$	$0 \leq B_{ij} <$	$B_{ij} < 1.1$ Weak			
$3 \le B_{ij} < 20$	$1.1 \leq B_{ij}$	< 3	Definite	9	
$20 \le B_{ij} < 150 \qquad 3 \le B_{ij} < 150$		< 5	Strong		
$150 \leq B_{ij}$	$5 \leq B_i$	i \mathbf{V}	Very Stro	ng	

Tension metrics for Terrestrial-cosmological tension status

$$\Delta m_{21}^2 = (7.50 \pm 0.21) \times 10^{-5} \,\mathrm{eV}$$
$$|\Delta m_{31}^2| = \begin{cases} (2.550 \pm 0.025) \times 10\\ (2.450 \pm 0.025) \times 10 \end{cases}$$

$$m_{\nu}^2 \equiv \sum |U_{ei}|^2 m_i^2$$

 $m_{\nu}^2 = 0.26^{+0.34}_{-0.34} \text{eV}^2$ $m_{\nu} < 0.8 \,\mathrm{eV}$ at 90% CL

Terrestrial-cosmological tension status (after DESI)

$2-3\sigma$ tension for NO $3-4\sigma$ tension for IO

prefers $\sum m_v = 0$?

Neutrino decays Long-range neutrino interactions Time-dependent neutrino masses Non ideal-gas fluids

Keep thinking in other mechanisms!

What if also beta/neutrinoless decay detect a signal but cosmology

THE NEUTRINO MENU

- Antipasto: Neutrino oscillation bounds
- Primo piatto: Cosmology & $\sum m_{\nu}$
- Secondo piatto: Tightest neutrino mass bounds
- Dolce: Take home messages

 Neutrino masses@CMB: Early ISW, gravitational lensing (Planck data) Neutrino masses@LSS: Free-streaming induces a small scale suppression, driving the "cosmo-nu-mass-bounds". $\bullet \Sigma m_v < 0.072 eV$ (95% CL) Planck TTTEEE+lensing+DESI BAO $\odot \Sigma m_v < 0.043 eV$ (95% CL) Planck TTTEEE+lensing+DESI BAO+ Cosmic Chronometers + Galaxy Clusters + GRBs Cosmological limits on neutrino properties: EXTREMELY ROBUST. O Clear tension between cosmological mass limits and terrestrial results • Crucial to confront future cosmological mass limits with neutrino oscillation results to constrain BSM interactions in the invisible sector.

Work developed on computing resources thanks to the MCIU with funding from the European Union NextGenerationEU (PRTR-C17.IO1) and Generalitat Valenciana (ASFAE/2022/020).

