The Canfranc Axion Detection Experiment

Alicia Gómez, on behalf of the CADEx Collaboration

Centro de Astrobiología (CSIC-INTA)

agomez@cab.inta-csic.es

Primera Reunión Presencial De Planes Complementarios de Astrofísica y Altas Energías

Motivation

- Inverse Primakoff effect: axion-photon conversion in strong magnetic fields.
- \circ Photon frequency \propto axion mass.
- Detection traditionally based on haloscopes and heterodyne receivers.
 - Standard quantum limit for heterodyne detectors at 100 GHz: 2.5 K
 - Very slow search for wide ranges

Looking for axions in the mm/submm/Far- IR desert

The challenging THz desert

Detection system

- Use of direct directors with state-of-the-art sensitivities.
- But... Sensitive to cosmic rays, so underground lab needed.

Haloscopes:

- High frequency resonant cavities.
 - Need technological demonstration.

Detection system must be:

- **Spectroscopic** to detect the expected narrow spectral feature.
- Polarimetric to detect the expected linear polarization.

CADEx can be considered as a technological platform

The CADEx Collaboration

CADEx: a novel and challenging experiment to search for dark matter axions in the range

330–460 μ eV (W-band \rightarrow 86–110 GHz). Also sensitive to dark photons.

Novel detection system: Haloscope + KIDs

Estimate 5σ sensitivity assuming:

Magnetic field: B = 8TTotal cavity volume: V = 0.2LCavity quality factor: $Q_0 = 2 \times 10^4$

 $----- 3 \text{ month exposure with NEP} = 10^{-19} \text{ W}/\sqrt{\text{Hz}}$ $----- 8 \text{ year scan with NEP} = 3 \times 10^{-20} \text{ W}/\sqrt{\text{Hz}}$

The CADEx Collaboration

Toulouse

Andorra

Ibiza

Valucia

Carcassonne

Palma

Algiers

مدينة الجزائر

Bouira

Montpelli

[JCAP 11 (2022) 044, arXiv:2206.02980]

The Canfranc Axion Detection Experiment (CADEx): search for axions at 90 GHz with Kinetic Inductance Detectors

Beatriz Aja,^a Sergio Arguedas Cuendis,^b Ivan Arregui,^a Eduardo Artal,^a R. Belén Barreiro,^d Francisco J. Casas,^d Marina C. de Ory,^e Alejandro Díaz-Morcillo,^f Luisa de la Fuente,^a Juan Daniel Gallego.^g Jose María García-Barceló.^f Benito Gimeno,^h Alicia Gomez,^e Daniel Granados,^{*} Bradley J. Kavanagh,^d Miguel A.G. Laso,^c Txema Lopetegi,^c Antonio José Lozano-Guerrero,^f Maria T. Magaz,^e Jesús Martín-Pintado,^{e,*} Enrique Martínez-González,^d Jordi Miralda-Escudé,^{b,j} Juan Monzó-Cabrera,^f Francisco Najarro de la Parra,^e Jose R. Navarro-Madrid,^f Ana B. Nuñez Chico,^k Juan Pablo Pascual,^a Jorge Pelegrin,^k Carlos Peña Garay,^k David Rodriguez,^e Juan M. Socuéllamos,^d Fernando Teberio,¹ Jorge Teniente,^c Patricio Vielva,^d Iván Vila,^d Rocio Vilar^d and Enrique Villa^e

CADEx Conceptual Design

- Immerse haloscope array in high static B = 8-10 T.
- Aim to discriminate the polarized axion-photon conversion signal from the unpolarized background.
- Detection system based on Kinetic Inductance Detectors.
- Cryogenic background at T = 100 mK.

Technological challenges

CADEx status: Haloscope

> Pushing 3D Cavities to the W-band while maintaining very high quality factor (Q).

$$f_r = \frac{c}{2}\sqrt{\frac{1}{a^2} + \frac{1}{b^2}}$$

Dimensions $a \approx 1.7 \text{ mm}$ and b = 40a gives a resonance frequency of $f_r = 90 \text{GHz}$

CADEx status: Haloscope

- > Pushing 3D Cavities to the W-band while maintaining very high quality factor (Q).
- \succ Develop tunable cavities to scan frequency range $f_r \in [86,111]$ GHz and tune Q.

CADEx status: Haloscope

- > Pushing 3D Cavities to the W-band while maintaining very high quality factor (Q).
- \succ Develop tunable cavities to scan frequency range $f_r \in [86,111]$ GHz and tune Q.

> Need to maximize volume to increase the sensitivity.

Detected axion-photon conversion power P:

$$P_d = \frac{\beta}{(1+\beta)^2} g_{a\gamma}^2 \frac{\rho_a}{m_a} B^2 C V Q$$

CADEx status: Optics

- > Quasi-optical system based on 16 horn antennas apertures focus signal going out from the
 - haloscope to the detection system.
- Polarization needs to be preserved.
- > To be fitted in the 100 mK space within the cryogenic system.
- > Filters are mandatory to diminish **out-of-band background signal**.

> Detection system based on superconducting Kinetic Inductance Detectors.

- > Detection system based on superconducting Kinetic Inductance Detectors.
- > A 64 LEKID camera based on Ti/Al bilayer has been developed and characterized.

- > Detection system based on superconducting Kinetic Inductance Detectors.
- > A 64 LEKID camera based on Ti/Al bilayer has been developed and characterized.
- > Room temperature quasi-optical polarization characterization demonstrated.

- > Detection system based on superconducting Kinetic Inductance Detectors.
- > A 64 LEKID camera based on Ti/Al bilayer has been developed and characterized.
- > Room temperature quasi-optical polarization characterization demonstrated.
- KIDs responsivity and 1/f noise characterization ongoing.

- > Detection system based on superconducting Kinetic Inductance Detectors.
- > A 64 LEKID camera based on Ti/Al bilayer has been developed and characterized.
- > Room temperature quasi-optical polarization characterization demonstrated.
- KIDs responsivity and 1/f noise characterization ongoing.
- > A contract for the fabrication of the multipixel readout system for KIDs is ongoing.

CADEx Timeline

10

CADEx already accepted by Canfranc Underground Laboratory (LSC) under EoI-31-2021

Design and Demonstration Phase (2 years)

Cryostat acquisition, installation and operation. Full quasi-optical design. Demonstration of key technology (haloscope and detectors) in the lab.

Pathfinder Phase (2 years)

First prototype of the full CADEx system to be installed and tested in LSC facility. Optimization

> Operation Phase (8 years)

Upgrade the experiment to improve the sensitivity & efficient non-resonant waveguide haloscope. Installation & Commissioning. Full Operation.

Thanks for your attention!!!

Alicia Gómez, on behalf of the CADEx Collaboration

Centro de Astrobiología (CSIC-INTA)

agomez@cab.inta-csic.es

