SPECTRUM OF GLOBAL STRINGS AND THE AXION DARK MATTER MASS

based on JCAP10(2024)043 with K. Saikawa, J. Redondo & A. Vaquero

Departamento de Física Teórica **Universidad** Zaragoza

Centro de Astropartículas y Física de Altas Energías Universidad Zaragoza

Mathieu Kaltschmidt mkaltschmidt@unizar.es

Saturnalia 2024 Zaragoza, December 18th 2024

- The QCD Axion
 - Pseudo Nambu-Goldstone boson associated with the spontaneous breaking of the global Peccei-Quinn (PQ) U(1) symmetry at the high-energy scale f_a .
 - Dynamical solution to the strong-CP problem.
 - Suitable candidate for Cold Dark Matter.
- Acquires a mass below the QCD scale.
- * Throughout this talk, when we refer to the axion, we implicitly mean the **QCD axion** (i.e. solves the strong CP problem)

Saturnalia 2024 @ Zaragoza, 18.12.24

Axion Dark Matter Mass

• What is the "typical mass" of QCD axion dark matter?

- results.

Saturnalia 2024 @ Zaragoza, 18.12.24

Redondo, Irastorza [1801.08127v2]

When did Inflation happen?

Pre-Inflationary Scenario

PQ broken **before** and **during** inflation

Saturnalia 2024 @ Zaragoza, 18.12.24

Post-Inflationary Scenario

PQ broken after inflation

When did Inflation happen?

Pre-Inflationary Scenario

PQ broken **before** and **during** inflation

Saturnalia 2024 @ Zaragoza, 18.12.24

Post-Inflationary Scenario

PQ broken after inflation

Mathieu Kaltschmidt (CAPA & U. Zaragoza)

Saturnalia 2024 @ Zaragoza, 18.12.24

I Kaltschmidt (CAPA & U. Zaragoza)

Formation of Topological Defects

- System undergoes a phase transition with order parameter θ
- Causally disconnected regions have different θ_i
- topological defects via the Kibble mechanism

Saturnalia 2024 @ Zaragoza, 18.12.24

• Those different patches meet and **spatial field gradients** lead to formation of

Kibble [J. Phys. A 9 (1976) 1387–1398]

$$\frac{1}{2}
abla^2 heta+m_a^2 heta=0$$

Mathieu Kaltschmidt (CAPA & U. Zaragoza)

Formation of Topological Defects

<u>Strings</u> Axion field winds around 2π

Saturnalia 2024 @ Zaragoza, 18.12.24

Domain Walls between true / false vacuum (0 and π)

Mathieu Kaltschmidt (CAPA & U. Zaragoza)

Formation of Topological Defects

Saturnalia 2024 @ Zaragoza, 18.12.24

BuCourtesy of J. Redondoa

9

 $\tau = 0.5$

O'Hare+ [2110.11014]

Saturnalia 2024 @ Zaragoza, 18.12.24

Mathieu Kaltschmidt (CAPA & U. Zaragoza)

O'Hare+ [2110.11014]

Saturnalia 2024 @ Zaragoza, 18.12.24

- $\log_{10}(\rho_a/\bar{\rho}_a)$
 - Network evolves to **scaling** solution -1.5
 - Scaling maintained by radiating **relativistic**, massless axions

-0.5

-1.0

-0.0

Mathieu Kaltschmidt (CAPA & U. Zaragoza)

$\tau = 2.1$

O'Hare+ [2110.11014]

Saturnalia 2024 @ Zaragoza, 18.12.24

$\log_{10}(\rho_a/\bar{\rho}_a)$

-1.0

-0.0

- -1.5 Network evolves to scaling solution
 - Scaling maintained by radiating relativistic, massless axions
 - QCD phase transition at $T \sim {
 m GeV}$
- **Domain Walls*** form and network collapses -0.5
 - Rapidly increasing mass renders axions nonrelativistic

*In general more complex dynamics if $N_{
m DW}>1$ $V(heta)\sim \cos(heta)
ightarrow \cos(N_{
m DW} heta)$

Mathieu Kaltschmidt (CAPA & U. Zaragoza)

$\tau = 4.0$

O'Hare+ [2110.11014]

Saturnalia 2024 @ Zaragoza, 18.12.24

$\log_{10}(\rho_a/\bar{\rho}_a)$

- Network evolves to scaling solution -1.5
 - Scaling maintained by radiating relativistic, massless axions
- -1.0• QCD phase transition at $T \sim \text{GeV}$
 - **Domain Walls*** form and network collapses
- Rapidly increasing mass renders axions -0.5nonrelativistic
- Axitons form and serve as seeds for dark matter -0.0structure formation (miniclusters/axion stars) see e.g. Vaquero+ [1809.09241]

How to simulate Axion Strings?

discretised on a static lattice:

$$\partial_{\tau}^2 \phi - \nabla^2 \phi + \delta$$

- - String core radius

$$\propto \frac{1}{m_r} \propto \frac{1}{f_a}$$
, where m_r = radial mass
String separation given by Hubble radius
 $\propto \frac{1}{H}$
Realistic value: $\frac{f_a}{H_{\rm QCD}} \approx 10^{30} \implies \log\left(\frac{m_r}{H}\right) \approx 70$

Saturnalia 2024 @ Zaragoza, 18.12.24

• Solve the classical EoM for a complex scalar field in comoving coordinates,

$\lambda \phi \left(|\phi|^2 - \tau^2 \right) = 0$

• **Tricky:** Simulations require proper resolution of two very different length scales

al mass

bble radius

Courtesy of K. Saikawa

Mathieu Kaltschmidt (CAPA & U. Zaragoza)

Jaxions Code

• Highly parallelised C++ code to simulate the evolution of the axion dark matter field in the early Universe

• Available on <u>Github</u>

Jaxions-docs	Q Search Jaxions-docs	View on GitHub
Home		
Installation		
Running the code		
Physics ~		
Python tools		
	lavione	
	JAXIOUS	
	A grid-based massively parallel code to study the Axion	field evolution
	before, around and after the QCD phase transition	
	View it on GitHub	
	Overview	
	 Axion string simulations to calculate emission spectra 	
	- String-Wall network simulations with $N_{\rm DW}=1$, $N_{\rm DW}=2$	
	Generalisation to axion-like-particles	
	 Interface with <u>AxionNyx</u> and <u>gagdet-4</u> 	
	Details on the physics of jaxions are found here.	
	Obtain the code	
	To download the source code from the public repository use:	
	git clone https://github.com/veintemillas/jaxions.git	

Saturnalia 2024 @ Zaragoza, 18.12.24

jaxions: Simulating the Axion Dark Matter Field in the Post-Inflationary Scenario

Alejandro Vaquero ⁽ⁱ⁾,^{*a*} Javier Redondo ⁽ⁱ⁾,^{*a,b*} Ken'ichi Saikawa ⁽ⁱ⁾,^{*c*} Mathieu Kaltschmidt ⁽ⁱ⁾,^{*a*} Giovanni Pierobon ⁽ⁱ⁾

- ^aCAPA & Departamento de Física Teórica, Universidad de Zaragoza, C. Pedro Cerbuna 12, 50009 Zaragoza, Spain
- ^bMax-Planck-Institut für Physik (Werner-Heisenberg-Institut), Föhringer Ring 6, 80805 München, Germany
- ^cInstitute for Theoretical Physics, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
- ^dSchool of Physics, The University of New South Wales, NSW 2052 Kensington, Sydney, Australia

E-mail: alexv@unizar.es, jredondo@unizar.es, saikawa@hep.s.kanazawa-u.ac.jp, mkaltschmidt@unizar.es, g.pierobon@unsw.edu.au

Abstract. We present jaxions, a massively parallel code to simulate the evolution of the axion field on a uniform grid, specialised for the case of axion dark matter in the post-inflationary scenario.

The code tracks the evolution of the Peccei-Quinn complex scalar field ϕ , as long as topological defects are present, the subsequent evolution of the axion field θ , and the non-relativistic field Ψ , well after the QCD phase transition.

Additionally, we provide an option to create initial conditions suitable for running the simulations with AMReX-based adaptive mesh codes such as axioNyx and a utility function to map the final grid into a particle snapshot, to continue the simulation of the forming miniclusters with the N-body code gadget4. The code also features the extensive python library pyaxions, with a variety of tools and options to set up, run and analyse the simulations.

The Issue of large log(m, H)

• Evolution of the string density suggests that the energy density of the system is of order

$ho\sim 8\pi\xi\log(m_r/H)H^2f_a^2$

to the typical density $H^2 f_a^2$ at QCD temperatures.

- Does this imply an enhancement of the axion abundance (and therefore of the dark matter mass)?
- We need to know how this energy is partitioned into radiated axions (i.e. the axion spectrum).

This leads to an enhancement by a factor of $\sim \xi \log(m_r/H)$ in comparison

Logarithmic Growth of String Density

Saturnalia 2024 @ Zaragoza, 18.12.24

Evolution of String Density

Characteristic time scale of network restoration

 $\frac{d\xi}{dt} = \frac{C(x)}{t}$

- Reasonable fit to data for C(x) =

Saturnalia 2024 @ Zaragoza, 18.12.24

• Model evolution of string network density with semi-analytic model:

$$(\boldsymbol{\xi}_c(\boldsymbol{\ell}(t)) - \boldsymbol{\xi}(t))$$

Equilibrium density from "conformal" string network with $\log(m_r/H) = \text{const.}$

Klaer & Moore [1912.08058]

$$=rac{x}{1+\sqrt{x}/c_0} \hspace{1.5cm} ext{with} \hspace{1.5cm} x=rac{\xi}{\xi_c}, \hspace{1.5cm} c_0\sim 1.5^{+0}_{-0}$$

• Admits **attractor** solution, allows for reasonable choice of initial conditions

Evolution of String Density

Logarithmic growth and attractor behaviour compatible with previous findings but behaviour at large $\log(m_r/H)$ still uncertain (linear growth vs. saturation).

Saturnalia 2024 @ Zaragoza, 18.12.24

 $\ln(m_r/H)$

Axion Radiation from Strings

• Differential energy transfer rate:

• Slope is important! Gorghetto+ [1806.04677, 2007.04990], Buschmann+ [2108.05368, 2412.08699], Saikawa, MK+ [2401.17253]

Saturnalia 2024 @ Zaragoza, 18.12.24

$$= \frac{1}{\left(f_a H\right)^2} \frac{1}{R^3} \frac{\partial}{\partial t} \left(R^4 \frac{\partial \rho_a}{\partial k} \right) \qquad (R: \text{ scale factor})$$

Axion Radiation from Strings

Saturnalia 2024 @ Zaragoza, 18.12.24

- There are several systematic effects, that could explain discrepancies in the literature:
 - Initial conditions
 - Axion field oscillations
 - Discretisation effects

Saturnalia 2024 @ Zaragoza, 18.12.24

Saikawa, Redondo, Vaquero, MK [2401.17253]

- There are several systematic that could explain discrepar the literature:
 - Initial conditions
 - Axion field oscillations
 - Discretisation effects

Saturnalia 2024 @ Zaragoza, 18.12.24

- There are several systematic that could explain discrepan the literature:
 - Initial conditions
 - Axion field oscillations
 - Discretisation effects

Saturnalia 2024 @ Zaragoza, 18.12.24

- There are several systematic that could explain discrepan the literature:
 - Initial conditions
 - Axion field oscillations
 - Discretisation effects

Saturnalia 2024 @ Zaragoza, 18.12.24

- There are several systematic effects, that could explain discrepancies in the literature:
 - Initial conditions
 - Axion field oscillations
 - Discretisation effects
 - Laplacian
 - Resolution of the string core $m_r a$

Saturnalia 2024 @ Zaragoza, 18.12.24

- There are several systematic effects, that could explain discrepancies in the literature:
 - Initial conditions
 - Axion field oscillations
 - Discretisation effects
 - Laplacian
 - **Resolution of the string core** $m_r a$

Saturnalia 2024 @ Zaragoza, 18.12.24

Saikawa, Redondo, Vaquero, MK [2401.17253]

Axions from Strings vs. Misalignment

Saturnalia 2024 @ Zaragoza, 18.12.24

Known for "standard" angleaveraged misalignment:

$$\Omega_a h^2 = K \Omega_a^{
m mis} h^2$$

Axion Dark Matter Mass Prediction

Saturnalia 2024 @ Zaragoza, 18.12.24

Saturnalia 2024 @ Zaragoza, 18.12.24

Mass Predictions from String Simula

Buschmann, MK+ [to appear]

Mathieu Kaltschmidt (CAPA & U. Zaragoza)

Saturnalia 2024 @ Zaragoza, 18.12.24

Mathieu Kaltschmidt (CAPA & U. Zaragoza)

Outlook: Adaptive Mesh Refinement (AMR)

- Idea: Focus computational power on specific parts of the grid
- Nowadays widely used in cosmological simulation codes, numerical relativity and in axion string simulations
- Current codes mostly based on <u>AMReX</u>

Drew & Shellard [<u>1910.01718</u>] "GRChombo"

Saturnalia 2024 @ Zaragoza, 18.12.24

Buschmann+ [2412.08699] "sledgehamr"

Schwabe+ [2007.08256] "axioNyx"

Outlook: Adaptive Mesh Refinement (AMR)

• Idea: Focus cor

- Nowadays wic numerical relat
- Current codes

Drew & Shellard [1910.01718] "GRChombo"

^{*} he grid des,

 $3D \rightarrow 2D$ projection of axion energy density \dot{a}^2 scale separation $\log m_r/H \sim 0.3$ conformal time $\eta \sim 1$

200.0 Hubble lengths

dgehamr"

Mathieu Kaltschmidt (CAPA & U. Zaragoza)

Buschmann [2404.02950]

Schwabe+ [20<u>07.08256]</u>

Summary

- Understanding of global string dynamics is very important for a precise prediction of the axion dark matter mass in the post-inflationary scenario.
- Our simulations predict $95\mu eV \leq m_a \leq 450\mu eV$.
- Fast developments in recent simulations allow us to have a better understanding, albeit serious discrepancies, this work identifies some of the major problems in the interpretation of results.
- There are several systematic effects that could bias the result, that could explain these discrepancies:
 - Initial conditions
 - Axion field oscillations
 - Discretisation effects
- can be achieved for example with AMR.

Saturnalia 2024 @ Zaragoza, 18.12.24

• Further improvement in the dynamical range would be helpful to make the extrapolation trustworthy,

Summary

- dark matter mass in the post-inflationary scenario.
- Our simulations predict $95\mu eV \leq m_a \leq 450\mu eV$.
- discrepancies.
- - Initial conditions

- Axion field oscillations
- Discretisation effects
- can be achieved for example with AMR.

Saturnalia 2024 @ Zaragoza, 18.12.24

• Understanding of the global string dynamics is very important for a precise prediction of the axion

• Fast developments in recent simulations allow us to have a better understanding, albeit serious

discrepancies. Gracias! There are several systematic effects that could bias the result, that could explain these discrepancies: Any Questions?

• Further improvement in the dynamical range would be helpful to make the extrapolation trustworthy,

Backup Slides

Departamento de Física Teórica Universidad Zaragoza

Centro de Astropartículas y Física de Altas Energías **Universidad** Zaragoza

Departamento de Física Teórica Universidad Zaragoza

Centro de Astropartículas y Física de Altas Energías Universidad Zaragoza

General

N_{DW} > 1: Axion Domain Wall Problem

- Axion cycles around $N_{\rm DW}$ times between $(-\pi, \pi)$
- In general we get more axions from wall decay, so preferred m_a is higher.
- Phenomenologically difficult. Domain wall network gets stuck and overwhelms the cosmic energy density.
- Must have some preferred minimum!

$$V(heta) pprox -\chi(T)\cos(N_{
m DW} heta)$$

Saturnalia 2024 @ Zaragoza, 18.12.24

(e) $N_{\rm DW} = 6$ Hiramatsu+ [1207.3166]

More details on the recent Paper

Departamento de Física Teórica Universidad Zaragoza

Centro de Astropartículas y Física de Altas Energías Universidad Zaragoza

Simulation Overview

- More than 1500 simulations performed at
 - RAVEN and COBRA supercomputers at Max Planck Computing and Data Facility (MPCDF)
 - SQUID supercomputer at Cybermedia Center, Osaka University
- Box sizes of up to 11.264³ (256 CPU nodes)

$\overline{\text{Type}^a}$	Grid size	Laplacian	Final time	$\ln(m_r/H)$	Parameter	Numb
51	(N^3)	1	$({ au_f}/L)$	at $ au_f$		simula
Physical	11264^3	4-neighbours	0.625	9.08	$\bar{\lambda} = 195799$	20
Physical	4096^{3}	1-neighbour	0.625	8.07	$ar{\lambda}=25890.8$	30
Physical	4096^{3}	2-neighbours	0.625	8.07	$ar{\lambda}=25890.8$	30
Physical	4096^{3}	3-neighbours	0.625	8.07	$ar{\lambda}=25890.8$	30
Physical	4096^{3}	4-neighbours	0.625	8.07	$ar{\lambda}=25890.8$	30
Physical	3072^{3}	4-neighbours	0.5	7.34	$\bar{\lambda} = 14563.6$	30
Physical	3072^{3}	4-neighbours	0.5	7.74	$ar{\lambda} = 32768$	30
Physical	3072^{3}	4-neighbours	0.5	8.08	$ar{\lambda}=64225.3$	30
Physical	3072^{3}	4-neighbours	0.5	8.37	$\bar{\lambda} = 114178$	30
Physical	2048^{3}	4-neighbours	0.55	7.12	$ar{\lambda} = 6400$	30×30
Physical	1024^{3}	4-neighbours	0.5	6.23	$ar{\lambda} = 1600$	$30{ imes}4^c$
Physical	3072^{3}	4-neighbours	0.458367	7.5	$ar{\lambda}=28571.2$	30
Physical	2560^{3}	4-neighbours	0.550042	7.5	$ar{\lambda} = 13778.5$	30
Physical	2048^{3}	4-neighbours	0.687552	7.5	$ar{\lambda}=5643.68$	30
Physical	1536^{3}	4-neighbours	0.916735	7.5	$ar{\lambda}=1785.69$	30
Physical	1024^{3}	4-neighbours	1.3751	7.5	$ar{\lambda} = 352.73$	30
PRS	8192^{3}	4-neighbours	0.55	6.80	$m_r a = 0.2$	20
PRS	8192^{3}	4-neighbours	0.55	7.21	$m_r a = 0.3$	20
PRS	8192^{3}	4-neighbours	0.55	7.72	$m_r a = 0.5$	20
PRS	8192^{3}	4-neighbours	0.55	8.06	$m_r a = 0.7$	20
PRS	8192^{3}	4-neighbours	0.55	8.41	$m_r a = 1.0$	20
PRS	8192^3	4-neighbours	0.55	8.82	$m_r a = 1.5$	20
PRS	4096^{3}	4-neighbours	0.55	7.72	$m_r a = 1.0$	30
PRS	2048^{3}	4-neighbours	0.55	7.03	$m_r a = 1.0$	30
PRS	1024^{3}	4-neighbours	0.55	6.33	$m_r a = 1.0$	30
PRS	2048^{3}	4-neighbours	0.5	6.93	$m_{r}a = 1.0$	1

Mathieu Kaltschmidt (CAPA & U. Zaragoza)

Axion Mode Evolution

$$\mathcal{F} = rac{1}{\left(f_a H
ight)^2} rac{1}{R^3} rac{\partial}{\partial t} \left(R^4 rac{\partial
ho_a}{\partial k}
ight)$$

• Contains oscillating components with frequency $\sim 2k$, interpreted as axion field oscillations after the horizon entry or production from the radial field.

Saturnalia 2024 @ Zaragoza, 18.12.24

• To calculate the differential spectrum, we need to know the time evolution of one mode:

Comparison with recent Results

Saturnalia 2024 @ Zaragoza, 18.12.24

Calculation of the Instantaneous Spectrum

- mode evolution data.

Saturnalia 2024 @ Zaragoza, 18.12.24

• Simple finite difference leads to a lot of contaminations from axion field oscillations.

• One can reduce them by applying a filter to remove high frequency components in the

Axion Field Oscillations

- The oscillations in the IR modes have an impact on the measurement of *q*.
- The effect can be alleviated by taking a broader range for the fit.

Saturnalia 2024 @ Zaragoza, 18.12.24

Initial Conditions

- Differences in the initial string density affect the slope of the radiation spectrum.

Saturnalia 2024 @ Zaragoza, 18.12.24

• Overdense (underdense) initial conditions could bias the estimation of *q* towards lower (higher) values.

Saturnalia 2024 @ Zaragoza, 18.12.24

Saturnalia 2024 @ Zaragoza, 18.12.24

Saturnalia 2024 @ Zaragoza, 18.12.24

Effects increases drastically at larger $\log(m_r/H)$, leading to a significant distortion of the spectrum.

Saturnalia 2024 @ Zaragoza, 18.12.24

Finite Volume Effects

- Fix $m_r a = 1.0$ and vary ratio of phys. box size *RL* to Hubble radius H^{-1} at $\ln(m_r/H) = 7$
- Results converge for $HRL \gtrsim 1.4$ (or $\tau/L \lesssim 0.7$)
- We terminate the simulations at $\tau/L \leq 0.625$

Should **not** be a problem!

Departamento de Física Teórica Universidad Zaragoza

Centro de Astropartículas y Física de Altas Energías **Universidad** Zaragoza

Technicalities

• To try to mitigate the contaminati masks to to compute derivatives:

$$\dot{X}^{ ext{mask}}\left(oldsymbol{x}
ight)=$$

• Simple choice is to use the fact the inside the core.

$$M(x) = \left(rac{|\phi(x)|}{f_a}
ight)^k$$

Saturnalia 2024 @ Zaragoza, 18.12.24

• To try to mitigate the contamination from the string core, we can introduce

 $M(\boldsymbol{x})\dot{X}(\boldsymbol{x})$

• Simple choice is to use the fact that the value of the radial field $|\phi|$ is zero

Saturnalia 2024 @ Zaragoza, 18.12.24

Saturnalia 2024 @ Zaragoza, 18.12.24

Mathieu Kaltschmidt (CAPA & U. Zaragoza)

Saturnalia 2024 @ Zaragoza, 18.12.24

 $\ln(m_r/H)$

Discretisation of the Laplacian

$$\left(
abla^2 \phi
ight)_{m{i}} = rac{1}{\delta^2} \sum_{u=x,y,z} \sum_{n=1}^{N_g} C_n (\phi_{m{i}+nm{n}_u} + \phi_{m{i}-nm{n}_u} - 2\phi_{m{i}}) egin{smallmatrix} & & & \ & \ & & \ & & \ & & \ & & \ & & \ & & \ & & \ & & \ & & \ & & \ & & \ & & \ & & \ & & \ & & \ & & \ & & \ &$$

- Spectrum **underestimated** at intermediate momenta for smaller N_{g}
- Observation of peak-like structure in the UV, height related to N_{g}

Saturnalia 2024 @ Zaragoza, 18.12.24

Departamento de Física Teórica **Universidad** Zaragoza

Centro de Astropartículas y Física de Altas Energías **Universidad** Zaragoza

Dynamical Range + AMR

How can we reach a larger dynamical range?

- Brute Force: Larger simulations on more powerful supercomputers
- **Better:** Use the given computational power more efficiently: **AMR!**
- In addition: Study effective models that allow us to study the network dynamics at high tension (Moore strings) with 2+3 extra degrees of freedom (two additional complex scalars + one vector field)

Saturnalia 2024 @ Zaragoza, 18.12.24

Klaer, Moore [1707.05566, 1708.07521, 1912.08058]

Potential Improvement with AMR

- - $RAM = 2 \times 2 \times 4 bytes \times$
- to balance the RAM between the root and the refined grids
- Suggests time-dependent number of refinement levels:.
 - $\ell+7\simeq \log_2(N_0^3/(\pi N_p$
- Results in log ~ 13,16,18 for base grids of $N_0 = 2048$, 4096, 8192 with $\ell = 9, 11, 13$. In practice not so trivial ...

Saturnalia 2024 @ Zaragoza, 18.12.24

• We can estimate the RAM needed to perform an AMR complex scalar simulation:

$$imes \left(N_0^3 + rac{\pi n_c n_r^2}{4} rac{r^\ell - 1}{r-1} N_p
ight) \quad {N_p = K_p - 1 \over \mathsf{Fle}}$$

 $= \xi imes 6 {\left(L/(N_0 au)
ight)}^2 imes N_0^3 \, .$ ury & Moore [1509.00026]

• This takes into account, that we refine only around the strings and that we want

$$(p_0)) = \log_2(N_0^2 \tau^2 / (\pi 6 \xi L^2))$$

Potential Improvement with AMR

Saturnalia 2024 @ Zaragoza, 18.12.24

