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1. INTRODUCTION

Quantum Gravity Theories

Attempts of unification: string theory, loop quantum gravity, super-
gravity, causal set theory...

In most of them a minimal length appears =⇒ Planck length (lP )??

This is closely related to an energy scale =⇒ Planck energy (Λ)??

Problem: there are no experimental evidences of a fundamental QGT

Changing the notion of spacetime

1 Classical spacetime → “quantum” spacetime

2 Symmetries? → LI should be broken/deformed at Planckian scales

3 New effects → Micro black holes creation?
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1. INTRODUCTION

GR is perturbatively non renormalizable

Quantum
gravity
approaches



1. f(R) theories introducing Ricci scalar terms in action
but non renomalizable

2. Introducing squared Ricci and Riemann tensor terms in
action but H unbounded from below

3. Non-local QFT and infinite derivative gravity

4.
Modifying kinematics
of SR by introducing Λ


- LIV: breaking Lorentz
invariance

-DSR: deformed Poincaré
invariance. Also non-local
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1. INTRODUCTION

Non-local QFT

These theories are ghost free

This possibility was considered in string and causal set theories

When applied to gravity, singularities disappear

Doubly Special Relativity (DSR)

Kinematics of SR are deformed by including a high-energy scale Λ

Deformed dispersion relation

C(k) = k20 − k⃗2 +
k30
Λ

+ ... = m2

Deformed conservation laws (composition law of momenta)

Total momentum = (p⊕ q)µ = pµ + qµ +
pµq0
Λ

+ ...

Dispersion relation and conservation law compatible with relativity
principle → deformed Lorentz transformations
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1. INTRODUCTION

RELATIVE LOCALITY

Fig.: Figures designed by Dr. Flavio Mercati
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2. PREVIOUS WORKS

IDEA: If a curved spacetime describes General Relativity, maybe a
maximally symmetric curved momentum space represents Quantum Gravity
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2. PREVIOUS WORKS

Deformed kinematics from geometric elements (tetrad, isometries, distance)

Starting with a maximally symmetric momentum metric gµν(p)

Computing the Casimir by using

C(p) = fµ(p)gµν(p)f
ν(p) , fµ(p) :=

1

2

∂C(p)

∂pµ

Computing the composition law by using

gµν (p⊕ q) =
∂ (p⊕ q)µ

∂qρ
gρσ(q)

∂ (p⊕ q)ν
∂qσ

The composition law defines a tetrad

eµν(p) :=
∂ (p⊕ q)ν

∂qµ

∣∣∣∣
q→0

1
J.M. Carmona, J.L. Cortés and J.J Relancio. Phys. Rev. D 100 (2019)

2
J.J. Relancio and S. Liberati. Phys. Rev. D 101 (2020)
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2. PREVIOUS WORKS

Different kinematics from the same metric

Particular example:
1 De Sitter metric

gµν(p) = ηµν + pµpν/Λ
2

2 Snyder kinematic’s isometry generators3

T λ
S =

√
1 +

p̄2

Λ2

∂

∂pλ
, J µν = pρ(δ

ν
λη

µρ − δµλη
νρ)

∂

∂pλ
,

satisfying

[T α
S , T β

S ] =
J αβ

Λ2
, [T α

S ,J βγ ] = ηαβT γ
S − ηαγT β

S ,

[J αβ ,J γδ] = ηβγJ αδ − ηαγJ βδ − ηβδJ αγ + ηαδJ βγ

3 Deformed composition law

(p⊕ q)Sµ = pµ

√
1 +

q2

Λ2
+

pµηµνqν

Λ2
(
1 +

√
1 + p2/Λ2

)
+ qµ

4 Noncommutativity of the space-time coordinates → [xµ, xν ] = iJ µν/Λ

3
M.V. Battisti and S. Meljanac. Phys. Rev. D 82 (2010)
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2. PREVIOUS WORKS

Different kinematics from the same metric

Particular example:
1 De Sitter metric

gµν(p) = ηµν + pµpν/Λ
2

2 κ-Poincaré kinematic’s isometry generators4

T µ
κ = T µ

S + nα
J µα

Λ
, J µν = pρ(δ

ν
λη

µρ − δµλη
νρ)

∂

∂pλ
,

satisfying (nµ := (1, 0, 0, 0))

[T α
κ , T β

κ ] =
nγ

Λ

(
T α
κ ηβγ − T β

κ ηαγ
)
,

[T α
S ,J βγ ] = ηαβT γ

κ − ηαγT β
κ +

nδ

Λ

(
ηδβJ αγ − ηδγJ αβ

)
[J αβ ,J γδ] = ηβγJ αδ − ηαγJ βδ − ηβδJ αγ + ηαδJ βγ

3 Deformed composition law

(p⊕q)
κ
µ = pµ


√√√√

1 +
q2

Λ2
+

q0

Λ

+qµ+nµ


√

1 + p2/Λ2 − p0/Λ

1 − p⃗2/Λ2

q0 +
qαηαβpβ

Λ

 − q0


4 Noncommutativity of the space-time coordinates → [x0, xi] = −ixi/Λ

4
A. Borowiec and A. Pachol. J. Phys. A 43 (2010)
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2. PREVIOUS WORKS

Deformed relativistic wave equations in momentum space

Klein–Gordon and Dirac equations already obtained in Hopf algebras5,6

We are able to reproduce them from a curved momentum space7

KG:
(
fµ(p)gµν(p)f

ν(p)−m2) ϕ̃(p) = 0

D: (γµηµρe
ρ
ν(p)f

ν(p)−m) ψ̃(p) = 0

being ϕ̃(p) the Fourier transform of the scalar field ϕ(x)

ϕ(x) =
1

(2π)3

∫
d4p eix

λpλ ϕ̃(p) δ(C(p)−m2)

5
J. Lukierski, A. Nowicki and H. Ruegg. Phys. Lett. B 293 (1992)

6
A. Nowicki, E. Sorace and M. Tarlini. Phys. Lett. B 302 (1993)

7
S.A. Franchino-Viñas and J.J. Relancio. Class. Quant. Grav. 40 (2023)
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3. OUR PROPOSAL FOR DSR QFT8,9

AIM: translating the aforementioned results to position space

First (incorrect) attempt for scalar fields:

S =

∫
d4x

1

2

{
fµ(i∂x)ϕ(x)gµν(−i∂x)fν(−i∂x)ϕ(x)−m2ϕ2(x)

}
Problem: the metric becomes a differential operator

Correct approach:

S =

∫
d4x

2

{
−ℓµ(−i∂x)ϕ(x)ηµνℓν(−i∂x)ϕ(x)−m2ϕ2(x)

}
where ℓµ(−i∂x) = eµν(p)f

ν(p) |p→−i∂x

8
J.J. Relancio, L. Santamaŕıa-Sanz. Phys. Rev. D (2024) arXiv:2403.19520

9
J.J. Relancio, L. Santamaŕıa-Sanz. Accepted in CQG (2024) arXiv:2403.18772
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3. OUR PROPOSAL FOR DSR QFT

ηµν is at the base of the theory → linear Lorentz invariance →
Restriction on bases:

C = C(p2)

fµ(p) = 1
2

∂C(p)
∂pµ

= pµ ∂C
∂p2

 =⇒ fµ(p) = −fµ(−p)

Variational principle to Klein-Gordon action yields(
ℓµ(i∂x)ℓµ(−i∂x) +m2)ϕ(x) = 0

1 C(p) = m2 holds iff ℓµ(−i∂x) = −ℓµ(i∂x) =⇒ eµν(−p) = eµν(p)

2 But

eµν(p) :=
∂ (p⊕ q)ν

∂qµ

∣∣∣∣
q→0

→ only Snyder kinematics are allowed
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3. OUR PROPOSAL FOR DSR QFT

We can replace ℓµ(−i∂x) → −i∂µΩ(−∂ν∂ν) ≡ −i∂̃µ

The action for KG fields is given by

S =

∫
d4x

1

2

{
∂̃µϕ(x)∂̃µϕ(x)−m2ϕ2(x)

}
for

ϕ(x) =

∫
d3p

(2π)3
√
2p0

(
ape

−ixλpλ + a†pe
ixλpλ

)
Equations of motion (

∂̃µ∂̃µ −m2
)
ϕ(x) = 0

The energy-momentum tensor is

Tµν = ∂̃µϕ∂̃νϕ− 1

2
ηµν

(
∂̃ρϕ∂̃ρϕ−m2ϕ2

)
with ∂µTµν = 0
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3. OUR PROPOSAL FOR DSR QFT

Important remarks

From DSR one finds an infinite derivative (nonlocal) QFT

Nonlocal phenomena are already present in DSR: noncommutative spa-
cetime and relative locality

QFT of causal set and string theories are embedded in our scheme:

CCT (−i∂x) = −□+
3

2π
√
6

□2

Λ2

[
3γ − 2 + ln

(
3□2

2πΛ4

)]
+ · · ·

CST (−i∂x) = −□ e□/Λ2
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3. OUR PROPOSAL FOR DSR QFT

The action for Dirac fields is given by

S =

∫
d4x ψ̄(x)

(
iγµ ∂̃µ −m

)
ψ(x)

Variation principle leads to equations of motion(
iγµ∂̃µ −m

)
ψ(x) = 0

The energy-momentum tensor is

Tµν = iψ̄(x)γµ∂̃νψ(x)− ηµν ψ̄(x)
(
iγρ∂̃ρ −m

)
ψ(x)
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3. OUR PROPOSAL FOR DSR QFT

The deformed EM tensor is

F̃µν = ∂̃µAν − ∂̃νAµ = Ω(−□)Fµν

The action when adding a minimal coupling to matter is

SEM = −
∫

d4x

(
1

4
F̃µν F̃

µν + jµAµ

)
The deformed Maxwell equations are

∂̃µF̃µν = jν , ∂̃µ F̃∗ µν = ∂̃µ 1

2
ϵµνρσF̃ρσ = 0

The electromganetic energy tensor is given by

Tµν =
1

4
ηµν F̃ρσF̃

ρσ + F̃µρF̃
ρ
ν .
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Electric potential of a point particle j0(x) = q δ3(r⃗), ji = 0

A0(r) = − q

2π2

∫ ∞

0

dk
k2

C(−k⃗2)
sin(kr)

kr
, E⃗ = −∇⃗A0(r)

For some metrics the electric potential becomes finite at the origin!

for the Casimirs of the AdS metrics

gAdS
µν = ηµν

(
1± p2

4Λ2

)2

, gAdS2
µν = ηµν ± pµpν

Λ2
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4. CONCLUSIONS AND FURTHER WORK

We have made a new proposal of QFT in DSR theories based on
geometry of a curved momentum space

This proposal leads to an infinite derivative (nonlocal) QFT

Only Snyder kinematics are allowed in this scheme

The electric potential for a point particle and the magnetic potential of
a magnetic dipole becomes finite at the origin for AdS models

Future work: include interactions, gravitational field of a point-like
mass
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