

The Cosmic Microwave Background (CMB)

The CMB is a homogenous and isotropic radiation that has travelled to us from the last scattering surface since the universe was 380,000 years-old. It has a blackbody spectrum with $T_0=2.725$ K

It presents small anisotropies at the level of ~10⁻⁵, which encode a wealth of information about the early Universe, its content and evolution.

CMB fluctuations are described as a random field on the sphere:

$$\frac{\Delta T}{T}(\vec{n}) = \sum_{\ell=1}^{\infty} \sum_{m=-\ell}^{\ell} a_{\ell m} Y_{\ell m}(\vec{n})$$

$$\left\langle a_{\ell m} a_{\ell' m'}^* \right\rangle = C_{\ell} \delta_{\ell \ell'} \delta_{m m'}$$

The angular power spectrum (C_{ℓ} 's), which depends on the cosmological model, is the key observable of the CMB

CMB polarization

- > CMB is partially and linearly polarised (polarization produced by Thomson scattering in the Last Scattering Surface)
- Linear polarisation is defined locally, in terms of the Stokes parameters Q and U
- ➤ Full-sky polarization maps can be decomposed into two components, the E-modes and the B-modes, (invariant under rotation) and are related to the Q and U Stokes parameters by a non-local transformation
- ➤ We can also measure auto- and cross-angular spectra for polarization, so we have: TT, EE, BB and TE (EB and TB are expected to be zero in standard cosmology)
- > Scalar perturbations produce only E-mode of polarization
- ➤ Primordial gravitational waves (predicted by inflation) produce both E and B-mode polarization → if we detect primordial B polarization, we have (indirect) proof of primordial gravitational waves!!

CMB power spectra measurements: current status

The flat Λ CDM cosmological model

- The Universe is highly homogenous and isotropic at large scales due to an early phase of cosmic inflation
- > Its spatial geometry is flat
- Most of the energetic content of the Universe is in one of following forms:
 - Baryonic matter (around 5%)
 - Weakly interactive cold dark matter (around 27%)
 - Dark energy (around 68%), which is responsible of the current accelerated expansion of the Universe

The flat Λ CDM model is defined with only 6 parameters: $\{\Omega_b, \Omega_c, H_0, n_s, \tau, A_s\}$

Best-fit from Planck + ACT + SPT

	i
Mean	68% CI
2.2381	0.0093
12.009	0.086
0.3166	0.0051
0.6833	0.0051
0.0559	0.0055
3.0479	0.0099
0.9684	0.0030
67.24	0.35
	2.2381 12.009 0.3166 0.6833 0.0559 3.0479 0.9684

Camphuis+ 2025

Cosmic tensions

H₀ measurements

CMB: $H_0 = 67.24 \pm 0.35$ [Camphuis+ 2025] CCHP: $H_0 = 70.4 \pm 1.9$ [Freeman + 2024]

SH0ES: $H_0 = 73.17 \pm 0.86$ [Breuval+ 2024]

6.4σ tension between CMB and SNs!!

- Preference for an excess of lensing in the CMB power spectrum in Planck PR3: no inconsistency in PR4, SPT or ACT
- Measurements of matter fluctuations σ_8 : recent values from different probes (including e.g. data from DES-Y3, KiDS) more consistent with CMB (<2 σ)
- ➤ Preference for a time-evolving dark energy when combining DESI + CMB + SNs
- ightharpoonup A tension ~2-3 σ between CMB and BAO from DESI-DR2 (assuming Λ CDM) has been reported [Camphius+ 2025, García-Quintero 2025]

CMB anomalies

- CMB maps reveal large-scale anomalies of moderate significance (~2-3σ) such as deficit of power in large scales, hemispherical power asymmetry, a prominent cold spot -- that challenge the isotropy of the universe [Planck Collaboration VII, 2020]
- The fact that the anomalies have been seen by two independent experiments (WMAP and Planck) increases confidence of these detections as real sky signals
- Interestingly, there is a hint of power asymmetry in polarization with the same orientation as that in temperature, although at a moderate significance [Gimeno-Amo et al. 2024]

Cosmic birefringence

- the rotation of the plane of linear polarization of CMB photons as they travel through space, potentially induced by coupling to an axion-like field (possibly associated to dark matter or dark energy)
- This effect produces parityviolating signatures in the CMB, such as non-zero TB and EB correlations
- Miscalibration angle of the detectors can also mimic CB, mixing E and B modes.
- Spurious EB from astrophysical emissions can also be present in the data

Recent measurements show tentative detections of rotations:

- β = 0.30° ± 0.11° Planck [Diego-Palazuelos+2022]
- β = 0.342° ± 0.093° Planck+WMAP [Eskilt & Komatsu 2022]
- β = 0.20° ± 0.08° ACT DR6 [Louis+ 2025]
- β = 0.32° ± 0.12° Planck [Remazeilles 2025]
- β = 0.215° ± 0.074° ACT DR6 [Diego-Palazuelos & Komatsu 2025]

The challenge of B-mode detection

B-mode not detected yet, best constraint r < 0.032 ($r \rightarrow$ tensor-to-scalar ratio amplitude) [Tristram et al. 2022]

Its detecion is extremely challenging, since it is a very weak signal. It requires:

- Exquisite control of systematics (many systematics can produce E→B leakage)
- Remove Galactic foreground contamination (mainly synchrotron at low frequencies and thermal dust at high frequencies)
- Remove spurious B-mode signal induced by gravitational lensing

The quest for the B-mode of CMB polarization

Credit: in original form, from E. Calabrese

The quest for the B-mode of CMB polarization

Credit: in original form, from E. Calabrese

The Simons Observatory

- Site: Atacama desert (Chile)
- 3 Small Aperture Telescope (SAT) + 1 Large Aperture Telescope (LAT), ~80000 detectors
- Covering 6 frequency bands from 27 to 280 GHz
- > 5-years observations
- Large international collaboration (12 countries, ~300 membrers) led by US

- f_{sky} ~10%, resolution ~ 0.5°
- Sensitivity ~ 2μk-arcmin
- Focus on primordial B-modes
- $\sigma_r \sim 0.003$

- f_{sky} ~40%, resolution ~ 1'
- Sensitivity ~ 6μk-arcmin
- Overlap with Galaxy surveys
- Neutrino mass, effective number of relativistic species, duration of reionization...

Astro2020 APC White Paper, SO Collaboration, 2019

The QUIJOTE Experiment

- ➤ Site: Teide Observatory (altitude 2400 m, 28.3° N, 16.5 W)
- ➤ Angular resolution: 0.92º to 0.26º
- > Sky coverage: -32° < Dec. < 88° (f_{skv} =0.65).
- Instruments
 - MFI, at 11, 13, 17 and 19 GHz (to be updated with MFI2)
 - TGI/FGI joint instrument at 30 and 40 GHz
- Main goals:
 - To improve our knowledge of Galactic polarized foregrounds at low frequency
 - To constrain primordial B-mode using different technology, frequency range and sky region than usual experiments
- Wide survey with MFI completed, main results and products published in 2023
- Unique frequency coverage
- Complementary to CMB experiments observing at higher frequencies

The QUIJOTE Experiment: wide survey with MFI (10-20 GHz)

Maps smoothed at 1 degree. Sky coverage ~ 29,000 deg².

Rubiño-Martín et al. 2023

LiteBIRD Collaboration

LiteBIRD: JAXA's L-class mission selected in May 2019 Aournd 400 researchers from Japan, North America and Europe

LiteBIRD: Lite spacecraft for the study of B-mode polarization and inflation from cosmic background radiation detection

- > JAXA's L-class mission selected in May 2019
- All-sky 3-year survey, from Sun-Earth Lagrangian point L2
- ➤ Large frequency coverage (40–402 GHz) at 70–18 arcmin angular resolution
- Final combined sensitivity: 2.2 μK·arcmin
- Definitive search for B-model signal from cosmic inflation: making a discovery or ruling out inflationary models
- Many other science outcomes: cosmic birefringence, reionization, neutrino mass, elucidating anomalies, Galactic astrophysics...

LiteBIRD Collaboration, PTEP, 2023, 042F01

Other projects of the Spanish CMB community

- ➤ A 90 GHz instrument is under development to be installed at the Teide Observatory [IAC, IFCA, U. Roma, IPMU]
- European Low Frequency Survey (ELFS) [U. Milan, IFCA, IAC, U.Oxford, IRAP, SISSA]
 - > aim to detect the B-mode using frequencies from 5-120 GHz
 - ➤ First step: installing a 5 10 GHz instrument in Atacama, followed by a 10-20 GHz one (that could complement other experiments as SO)
- Tenerife Microwave Spectrometer (TMS) [IAC, INAF, U.Milan, UPCT, IDOM company]
 - ➤ Absolute spectrometer in the 10-20 GHz range that will be installed at the Teide Observatory
 - Main goal to characterize the absolute monopole from our Galaxy and to probe possible deviations of the CMB spectrum from a blackbody

Final remarks

- \triangleright Current observations show that the base- Λ CDM model fits well CMB data (temperature, polarization, lensing).
- Density fluctuations consistent with predictions from the simplest models of inflation. No primordial gravitational waves detected yet.
- \triangleright However, some tensions remain, mainly with direct measurements of H_0 .
- Origin of CMB anomalies is not clear yet.
- ➤ Tentative detections of the rotation of CMB polarization that could point towards Cosmic Birefringence.
- Many efforts on the way to detect the intrinsic B-mode of polarization, that would test $r^{10^{-3}}$.
- Exciting results to come in the next years...