

Indirect Detection of Dark Matter

Quick status and personal thoughts

Bryan Zaldívar, Valencia (IFIC)

Dark matter: theoretical possibilities

Cirelli, Strumia, Zupan, 2004

Reference(s)

Mass range spanning ~90 orders of magnitude

A whole zoo of DM candidate types

Date

Candidate

The idea of Indirect Detection

Search for anomalous astrophysical emission from DM

Search channels and (some) experiments

Radio

HASLAM
LOFAR
HERA
EDGES
ANITA
SKA

Microw.

AXDM QUAX

PLANCK
CMB-S4?
Simons Obs.

IR, Optical, UV

> LORRI JWST Hubble Gaia Euclid

X-ray

CHANDRA
XMM-Newton
INTEGRAL
SWIFT
NUSTAR
XHTM
MICRO-X
EROSITA
XRISM
ATHENA

γ -ray

INTEGRAL HESS **VERITAS** MAGIC **FERMI TAIGA HAWC** COSI-SPB MACE **EROSITA** LHAASO CTA **ADEPT** GAMMA-400 **AMEGO APT**

Ch. CR

AMS-02
CALET
DAMPE
ISS-CREAM
LHAASO
HERD
ALADINO
AMS-100

Neutrino

SUPER-K
ICECUBE
ANITA
KM3NET
DUNE
HYPER-K

Surviving hints?

COB and **CIB** excesses

LORRI (2022), CIBER (2017)

γ-ray line at 511 keV

Since ~70's, now INTEGRAL, COSI (2020) — Galactic Centre

"Galactic Centre Excess"

FERMI-LAT, since 2009

X-ray line at 3.55 keV

XMM-NEWTON, CHANDRA, 2014

Anti-proton excess

AMS-02 (2015), ~ 80GeV DM hypothesis

Electron-positron excess

DAMPE (2017), ~1TeV DM hypothesis

ANITA anomaly

2018, 2020, O(EeV) DM hypothesis

21cm anomaly

EDGES, 2018

So far...no conclusive evidence Why?

So far...no conclusive evidence Why?

Dark matter does not interact at all with the SM

So far...no conclusive evidence Why?

Dark matter does not interact at all with the SM

So far...no conclusive evidence Why?

Dark matter does not interact at all with the SM

• It interacts, but not in the channels we are considering so far

• It interacts, but too weakly (still out of experimental reach)

So far...no conclusive evidence Why?

- Dark matter does not interact at all with the SM
- It interacts, but not in the channels we are considering so far
- It interacts, but too weakly (still out of experimental reach)
- It interacts, but our limited background knowledge is a stopper

Data, data, and more data...

... requires better inference methods

More sophisticated stats and tools

pypi package 0.25.0 conda-forge v0.25.0 contributions welcome license Apache-2.0 JOSS 10.21105/joss.07754 NumFOCUS affiliated p

sbi: Simulation-Based Inference

Statistical treatment Improvement — statistics vs systematics

- Build facilities with smaller instrumental noise (stats)
- Improve the background treatment (syst)

Statistical treatment

Improvement — statistics vs systematics

Build facilities with smaller instrumental noise (stats)

Improve the background treatment (syst)

Take background as **nuisance**, and adopt data-driven methods

Signal region: Physics of interest

Background region: fitting data with convenient

mathematical functions and methods

Some data-driven studies (incomplete list & of course biased)

Some data-driven studies (incomplete list & of course biased)

• Galactic Centre Excess problem (DM vs pulsars) Caron et al, 2018 — JCAP 05 (2018) 058 Caron et al, 2023 — JCAP 06 (2023) 013 Prediction of the fraction of the GCE due to pulsars, based on fitted simulations of the gamma-ray emission

- Allows for direct estimation from low-level inputs (images in practice)
- Exploits full simulations (instead of summaries)
- Makes explicit the impact of simulation setups
- More robust conclusions (GCE probably due to MSP, indeed...)

Some data-driven studies (incomplete list & of course biased)

Searching for DM from Fermi-LAT sources (either dSphs or unIDs)

Calore, Serpico, **BZ**, 2018 — *JCAP* 10 (2018) 029

Predict the background emission at dSphs with non-parametric kernel models

- Fully data-driven alternative to traditional template fitting
- First globablly consistent statistical model of the background emission
- Allows for a robust treatment of background uncertainties
- Limits on the DM are clearly weakened!

Some data-driven studies (incomplete list & of course biased)

• Searching for DM from Fermi-LAT sources (either dSphs or unIDs)

Amerio et al (incl. BZ), 2025 — arXiv: 2503.14584

Probability density estimation of the unID spectrum with a mixture model of astro+DM

- First statistical model of the LAT's unIDs spectra
- Thus allows to generate mock data from sampling
- Provides a robust likelihood useful for other analyses
- Competitive limits wrt other unID analyses!

Some data-driven studies (incomplete list & of course biased)

Searching for DM from AMS-02 anti-protons

Kahlhoefer et al, 2021 — *JCAP* 12 (2021) 12, 037

Predicting the anti-proton flux from a Neural Emulator trained on simulations fitting the AMS-02 data

- Use of nested sampling of a d=20+ parameter space
- Emulators allow for a much more efficient parameter space exploration
- Efficient marginalisation over cosmic-ray (nuisance) parameters
- Results comparable or not with previous studies, depending on the propagation model

Some data-driven studies (incomplete list & of course biased)

Impact of DM on the Structure Formation Era (21cm)

Constraints on WDM from HERA forecasts with SBI

Decant, Dimitriou, Lopez-Honorez, **BZ**, 2025 — *JCAP* 07 (2025) 004

- SBI as a statistical approach much more efficient than MCMC for 21cm studies
- Explicit improvement of reconstruction precision with increasing length of training data
- Unlock a systematic study of degeneracies among the astrophysical and DM physics
- Constraints stronger than Ly-alpha for small enough values of the halo mass "threshold"

Conclusions

 The field of DM Indirect Detection is looking forward to the new data wave from coming experiments (CTA, HERA, SKA, ...)

 It's time to refine our simulators and develop statistical methods on par with the latter in terms of sophistication

Simulation-based inference came to stay!

Conclusions

• The field of DM Indirect Detection is looking forward to the new data wave from coming experiments (CTA, HERA, SKA, ...)

 It's time to refine our simulators and develop statistical methods on par with the latter in terms of sophistication

Simulation-based inference came to stay!